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A Neural Network Approach to Bilingual Dictionary 

Induction for Indonesian Ethnic Languages 

Kartika Findra Resiandi 

Abstract 

Indonesian ethnic languages are endangered. The most important stage in 

enriching low-resource languages is to create a bilingual dictionary. It has been 

demonstrated that the constraint-based technique aids in the induction of bilingual 

lexicons from two bilingual dictionaries via the pivot language, especially for the 

closely related ones. However, a common concern with the pivot-based approach 

if there are any mistakes made in the source-to-pivot translation will be carried 

over to the pivot-to-target translation. Furthermore, the low number of 

dictionaries for the input and the small size of the input dictionaries limit the 

number of the generated translation pairs. 

Therefore, we proposed a neural network approach to create a bilingual 

dictionary between ethnic languages by extracting transformation rules of 

translation pairs. Once acquiring the rules, we can generate many translated words 

from a source word list. For example, between Indonesian and Minangkabau, the 

last phoneme "a" in Indonesian tends to turn "o" in Minangkabau, or the middle 

phoneme "ia" appears to turn "i", and many more. To this end, we employed a 

sequence-to-sequence model, where the encoder reads the input word and then 

extracts a feature of the input while the decoder generates a translated word from 

the feature. In this research, we focus on ethnic languages that have closely related 

to Indonesian. This research addresses the following two research issues. 

Effective word tokenization for translating word pairs  

In a sequence-to-sequence model, the encoder and decoder need to receive and 

generate a word as sequence data, respectively. Although the simplest sequence 

data is a sequence of characters, the length of the sequence becomes long. 

Therefore, we need to find effective tokenization to balance the kinds of tokens and 

the length of the sequence. 

Low Resource Language has Low Data Size 
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There are several types of neural network architecture that receive sequence 

data as a word. Moreover, translation pairs data for training are small. Therefore, 

we need to adjust neural network architecture and model parameters such as epoch, 

batch size, and learning rate to prevent the model from overfitting and to improve 

the accuracy of the model. 

To address the first issue, this research used Bi-LSTM as the encoder and LSTM 

as the decoder processes. We must identify the kind of tokens that are useful for 

extracting the transformation patterns. The first approach by character-level one 

hot embedding and the second approach uses the SentencePiece which 

implements Byte Pair Encoding where vocabulary size is required for the 

tokenization, which will have an impact on the input to the encoder and decoder.  

To adjust network architecture and model parameters, we implemented 

learning rate schedule technique is learning rate decay. We set a learning rate is 

0.001 then the learning rate decreases by 1% for every epoch above the 15th 

We validated the proposed method by applying it to three language pairs from 

Indonesian to ethnic languages with fewer word pair translations: Indonesian to 

Minangkabau, Palembang, and Malay. 

The following are the research's contributions:  

Effective word tokenization for translating word pairs 

Our character level model performance with an average precision of 83,92% 

outperforms Byte Pair Encoding (with vocabulary size from 33 to 300) models. We 

tried 7 times experiment with various vocabulary sizes, the maximum size used is 

300. In general, the results are higher when the vocabulary is larger. However, the 

experimental results showed approximately the same vocabulary size as character 

level based achieved the highest performance among BPE models. Our neural 

network architecture works effectively for three Indonesian ethnic languages even 

with about half the size of input dictionaries (Minangkabau, Palembang, Malay) 

with an average precision of 74,6% 65.2%, 65.08% respectively. 

Low Resource Language has Low Data Size 

We also compare performance according to each pattern with a simple rule-

based. The neural network approach outperforms the simple rule-based with an 

average precision of 66% and 34%. 
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Chapter 1 Introduction 
Indonesia’s riches extend beyond natural resources such as minerals, 

vegetation, and fauna. Furthermore, the archipelago’s culture is highly diversified, 

and so does a variety of ethnic languages in Indonesia. The Austronesian language 

family includes Indonesian, derived from the Malay language. Since prehistoric 

times, Indonesian ethnic languages have developed, resulting in a different 

language for each ethnic group in Indonesia [12]. 

Currently, the phenomenon of ethnic language extinction in Indonesia has 

become a problem that grabs the attention of scholars, especially linguists. The 

Summer Institute of Linguistic states that the local languages are endangered and 

may cease to be spoken in Indonesia. The most important stage in enriching low-

resource languages is to create a bilingual dictionary. It has been demonstrated that 

the constraint-based technique aids in the induction of bilingual lexicons from two 

bilingual dictionaries via the pivot language, especially for the closely related ones. 

However, a common concern with the pivot-based approach if there are any 

mistakes made in the source-to-pivot translation will be carried over to the pivot-

to-target translation. They will be produced in all the target languages. 

Therefore, we started the Indonesia Language Sphere project that aims at 

comprehensively creating bilingual dictionaries between the ethnic languages 

using a neural network approach in order to conserve local languages on the verge 

of extinction [6]  As an expected result, the vocabulary of the ethnic language will 

expand, more people will learn it, and if there are no more speakers in the future, 

the language will become extinct.  The current case for experiment focuses on 

Indonesian to Minangkabau,  Palembang, and Malay languages, because the 

languages have a very high similarity with Indonesian, their geographical 

proximity is also near, as they are both in the Indonesian province of Sumatera, 

and since most of the nationalist writers who contributed to the early development 

of Indonesian were of Minangkabau ethnicity. Minangkabau language (closely 

linked to Malay) significantly influenced Indonesian in its formative years [10].  
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Because the Indonesian ethnic language is a low resource language, and it has a 

limited amount of data, we chose Minangkabau as the language to implement the 

proposed method in this study. We tried the Palembang and Malay language while 

learning the Minangkabau language with a neural network model, despite the lack 

of data. The Indonesian and Minangkabau languages have significant similarities, 

between two languages, we presume they have several phonetic transformation 

rules. For example, there appears to be a rule in Indonesian and Minangkabau that 

the last phoneme ”a” in Indonesian tends to turn ”o” in Minangkabau, while the 

middle phoneme “ia” appears to turn “i”. There are many more patterns in the 

language. Although this rule isn’t always applicable, it can help predict a rough 

translation as a preliminary translation. This study predicts the translation using 

character level embedding, compared to the SentencePiece method using the Bi-

LSTM sequence-to-sequence model. Besides that, in this study we also compare 

the neural network performance with simple rule based as baseline to compare our 

model. When compared to simple rules, how effectively the proposed model can 

reproduce the well-known pattern.
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Chapter 2 Related Work 
 

This chapter explains the background of the study, the challenges of developing 

bilingual dictionary induction, and reference research. 

2.1  Bilingual Dictionary Induction 

Creating a bilingual dictionary is the first crucial step in enriching low-resource 

languages. Especially for the closely related ones, it has been shown that the 

constraint-based approach helps induce bilingual lexicons from two bilingual 

dictionaries via the pivot language [7, 8]. The low number of dictionaries for the 

input and the number of the generated translation pairs depends on the size of the 

input dictionaries. However, implementing the constraint-based approach on a 

large scale to create multiple bilingual dictionaries is still challenging in 

determining the constraint-based approach’s execution order to reduce the total 

cost. Plan optimization using the Markov decision process is crucial in composing 

the order of creation of bilingual dictionaries considering the methods and their 

costs [9, 11].  

In this research, we would like to extract transformation rules from the 

Indonesian to Minangkabau language. Table 1 shows the example of Indonesia 

Minangkabau dictionary.  

 

 

 

 

 

 

 

 

 

  

Table 1. Example of Indonesian-Minangkabau words 

Indonesian Minangkabau 

Apa Apo 

Merupakan Marupokan 

Kesudahannya Kasudahnyo 

Patuang Patung 

Balik Baliak 

Menderita Mandarito 

Panas Paneh 

Sekelilingnya Sakaliliangnyo 
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2.2  A Neural Network Approach 

Heyman et al. [2] have proposed a method to make bilingual lexical induction 

as a binary classification task in the biomedical domain for English to Dutch. They 

create a classifier that predicts whether a pair of words is a translation using 

character and word level, LSTM method. This study reveals that character-level 

representations successfully induce bilingual lexicons in the biomedical domain. In 

the charpairs experiment, the total average F score for the test data consisting of 

translation pairs with Greek or Latin origin is 55.04. Character level encoder 

representation in charpairs is their technique. The word level in this example is 

unrelated to this study, however they do have four experiments that mix the word 

and character levels. 

Recently, deep learning is the most popular approach, utilize sequence-to-

sequence learning, which consists of an encoder and a decoder [15].  Zhang et al. 

[17] presented a character-level sequence-to-sequence learning approach proposed 

in this study. RNN is the encoder-decoder technique used to generate character-

level sequence representation for the task of English-to-Chinese. For the 

construction of an RNN encoder-decoder in the field of machine translation [19], 

Yang et al. [20] developed the encoder Bidirectional LSTM and the decoder LSTM 

based sequence-to-sequence model. Wazery et al [21] utilizing Sequence-to-

Sequence model with encoder as BI-LSTM and LSTM as decoder to summarize the 

Arabic text. They also compare with GRU and LSTM. Bi-LSTM is the best result by 

BLEU score is 0.41.  
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Chapter 3 Sequence-to-Sequence Model 
 

3.1 Overview 

Deep learning techniques called sequence-to-sequence are employed to address 

machine translation issues. Sequence-to-sequence (Seq2Seq) is a model based on 

recurrent neural network that predicts the words in the output one at a time, which 

will then be integrated into a sentence, after reading each word from an input 

sentence one at a time. Two Recurrent Neural Networks (RNN), the encoder and 

decoder combine to generate the Seq2Seq model. The target sequence is generated 

by the decoder using the context vector as the "seed" by the encoder's RNN network, 

which encodes the input sequence into a fixed-size context vector. Therefore, the 

Seq2Seq model is often also referred to as the encoder-decoder model. RNN have 

a difficulty called vanishing gradients, which is why some sequence-to-sequence 

models use a development of recurrent neural networks called long short-term 

memory (LSTM) [17]. LSTM has also been used frequently to represent intelligence 

in language processing.  

 

 

 

 

 

 

 

Figure 3.1: Se2Seq Model consisting of LSTM and Bi-LSTM [21] 

3.2 Long Short-Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) is an upgraded Recurrent Neural 

Network (RNN) that is used to overcome the problem of vanishing and exploding 

gradients [3]. LSTM addresses the problem of long-term RNN reliance, in which 
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RNNs are unable to predict input data stored in long-term memory but can make 

more accurate predictions based on current information. The LSTM architecture 

can store large amounts of data for lengthy periods of time. They are applied to 

time-series data processing, forecasting, and categorization. Memory cells and gate 

units are the key components of the LSTM architecture. Forget gate, input gate, 

and output gate are the three types of gates in an LSTM. Figure 3.1 illustrates the 

structure of the LSTM model.  

Figure 3.2: Unit structure of the LSTM [18] 

Cell memory tracks the dependencies between components in the input 

sequence. New values that enter the cell state are handled by the input gate. The 

LSTM unit utilizes a forget gate to select the value that remains in the cell state. The 

value in the cell state that remains will be sent to the output gate, where the LSTM 

activation function, also known as the logistic sigmoid function, will be used to start 

the calculation. The tanh and sigma symbols represent the types of activation 

functions employed in the neural network's training layers.  

Allowing information to flow through it unmodified, a sigmoid gate, which 

restricts how much information may pass through, is another essential feature of 

LSTM. The outputs of the sigmoid layer, which vary from zero to one, specify how 

much of each component should be permitted to pass. The equation that controls 

the LSTM flow is as follows: 

𝑓𝑡 = 𝜎(𝑤𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 

𝑖𝑡 = 𝜎(𝑤𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖  

𝐶𝑡 = tanh (𝑤𝑐 ∙ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑐  
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C̃t =  𝑓𝑡  ×  𝐶𝑡−1  + 𝑖𝑡 ∗ 𝐶𝑡 

𝑜𝑡 = 𝜎(𝑤𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜 

ℎ𝑡 = 𝑜𝑡  × 𝑡𝑎𝑛ℎ𝐶𝑡 

where 

𝑜𝑡  : at time t, ouput gate 

𝑖𝑡   : at time t, input gate 

ℎ𝑡  : output at time t 

𝑓𝑡  : forget gate, at time t 

𝑥𝑡  : input at time t 

𝜎  : sigmoid function 

𝐶𝑡  : the state of the cell at time t 

𝑤𝑜,𝑤𝑓 , 𝑤𝑖 , 𝑤𝑐   : weights that have been trained 

𝑏𝑐 , 𝑏𝑖 , 𝑏𝑓   : trained biases 

3.3 Bi-Directional Long Short-Term Memory (Bi-LSTM) 

RNN has an advantage in the reliance between coding inputs. However, LSTM 

has an advantage in resolving RNN’s long-term issues. Improvements are made 

with Bi- RNN because only one direction of previous contextual information can 

be used by LSTM and RNN [13]. As a result of the advantages of each technique, 

the LSTM form is kept in the cell memory, and Bi-RNN can process information 

from the previous and next contexts, resulting in Bi-LSTM [13]. Bi-LSTM can 

leverage contextual information and generate two separate sequences from the 

LSTM output vector. Each time step’s output is a mixture of the two output vectors 

from both directions, as the Figure 3.3 below, where ℎ𝑡 is the forward or backward 

state [16]. The Bi-LSTM network computes the output vector sequence = (𝑦1, 𝑦2,.., 

𝑦n ) and the hidden vector sequence h = (h1, h2 , ... , hn). The semantic representation 

of the input sequence is thoroughly examined by Bi-LSTM in both directions. In 

contrast to the decoder, which seems sequential from right to left, the encoder's 

process appears sequential from left to right.  

Forward hidden is represented in a symbol ℎ⃗ and backward hidden is 

represented by the symbol ℎ⃖⃗. Following the equation below, the forward hidden 
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sequence and the backward hidden sequence are iterated at each time step. For the 

front layer in the first equation, iteration begins at t = 1 and continues through N. 

ℎ⃗ = H (𝑏ℎ⃗⃗  + 𝑊ℎ⃗⃗ ℎ⃗⃗  ℎ
⃗⃗⃗  

𝑡−1 + 𝑊𝑥ℎ⃗⃗ 𝑋𝑡) (1) 

ℎ⃖⃗ = H (𝑏ℎ⃗⃗⃖ + 𝑊ℎ⃗⃗⃖ ℎ⃖⃗𝑡−1 + 𝑊𝑥ℎ⃗⃗⃖𝑋𝑡) (2) 

 

Iteration for the backward layer in the second equation begins at 𝑡 = 𝑁 and goes 

to 1. In all parameters, forward layers are represented by arrows pointing left to 

right, and backward layers by arrows pointing right to left. In order to encode the 

information, the letters in the input are first represented as 𝑡 − 𝑡ℎ  and then 

encoded in ℎ𝑡. W and b are variables that represent the weight of the matrix and 

the bias vector, respectively. Figure 3 depicts the combination of LSTM and Bi-

RNN. 

 

 

 

 

 

 

 

 

Figure 3.3: Bi-LSTM Architecture [18] 
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Chapter 4 Tokenization for Sequence-to-Sequence 

Model 
 

4.1 Character Level Sequence-to-Sequence Model 

 The first approach is using character level one hot embedding where words will 

be separated as characters, and each vector has the same length size adjusted by 

total characters. Then, sequence-to-sequence (Seq2Seq) model, which employs 

RNN encoders and decoders. In this study, Bi-LSTM encoder and decoder 

processes are employed. The Bi-LSTM encoder creates a representation of the 

input words by parsing each character of the word in the source language 

(Indonesian). The LSTM decoder uses the encoder's output as input and outputs 

the target language character by character (Minangkabau). Figure 4.1 describe the 

example of Indonesian word “ada” change into character level one hot embedding 

vectorization with the same size of all characters.  

 

 

 

 

 

Figure 4.1: Example of one hot embedding vector 

The character-level encoder computes a vector representation from a word of 

character sequences in the source language. Replace each character by a one-hot 

vector. A one-hot vector is a vector with all zeros except at the dimension that 

corresponds to the position of the character in the vocabulary. For instance, the 

one-hot encoding of the character a would be <1, 0, 0, 0, … >, the one-hot 

encoding of b would be <0, 1, 0, 0, … > and so on. The sequence of vectors will be 

the input to Bi-LSTM.  
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Figure 4.2 shows the Seq2Seq model considered in this study with a two-layered 

Bi-LSTM encoder and LSTM decoder. The encoder’s functions are to character by 

character read the input sequence, build context, and extract a summary of the 

input. The decoder will provide an output sequence in which the previous character 

affects every character in each time step as well as the next character that emerges. 

The marker <eos> denotes the end of a sentence, and it will determine when we 

stop predicting the following character in a series [15]. Following the construction 

of the encoder and decoder network architectures in this typical end-to-end 

framework, a training approach may be utilized to obtain an optimal word pair 

translation model and to keep the character order is referred to as a cell state or 

memory cell since the horizontal line going across the bottom of the diagram is in 

the source and target words, the input (Indonesia) and output (Minangkabau) 

sequence must be treated in time order. For the Indonesian language, there are 28 

input tokens used, and there are 31 output tokens as Minangkabau language. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Character Level Sequence-to-Sequence Model [18] 

 



 

 

 

 11 

4.2 Byte Pair Encoding-based Tokenization   

BPE builds a base vocabulary consisting of all symbols found in the set of unique 

words, then learns merge rules to combine two symbols from the base vocabulary 

to create a new symbol. It continues to do until the vocabulary has grown to the 

required size. BPE algorithm replaces the data byte pairs that occur most 

frequently with a new byte until the data can no longer be compressed since no byte 

pair occurs most frequently. The steps in the training procedure are as follows [14]: 

1) Gather a huge amount of training data. 

2) Determine the vocabulary’s size. 

3) At identify the end of a word, add an identifier (</w>) to the end of each 

word, and then calculate the word frequency in the text. 

4) Calculate the character frequency after dividing the word into characters. 

5) Count the frequency of consecutive byte pairs from the character tokens for 

a predetermined number of rounds and combine the most frequently 

occurring byte pairing. 

6) Repeat step 5 until performed the necessary number of merging operations 

or reached the specified vocabulary size. 

The input text is treated as a sequence of unicode characters by SentencePiece. 

Whitespace is also treated like any other symbol. SentencePiece expressly handles 

whitespace as a fundamental token by first escaping it with the meta symbol "___" 

(U+2581) [5]. Meanwhile the symbol of ‘\n’ is the end of string.  

 

4.2.1  SentencePiece 

The second method we presented is SentencePiece as subword tokenization. 

According to Kudo [5], subword tokenization implements SentencePiece, 

subword-nmt, and wordpiece model features. Subword vocabulary is built by using 

the BPE segmentation method to train a SentencePiece tokenization model, which 

divides words into chunks of characters based on vocabulary size to make pattern 

detection easier. According to Kudo and Richardson [5], a SentencePiece is made 

up of four primary parts:  
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1. Normalizer is a module that may canonically normalize identical Unicode 

characters.  

2. Trainer, trains the model for subword segmentation of the normalized 

corpus. 

3. Encoder, uses the subword model taught by the trainer to tokenize and 

normalize the input text into a list of subwords.  

4. Decoder, which converts subwords into normalized text, reverses their order. 

 

4.2.1 BPE-Based Tokenization in Indonesian Ethnic Languages 

BPE was added to our research methodology because Indonesian ethnic 

languages now utilize an alphabet script established by the Dutch despite having 

original scripts in the past. Dutch people appeared to assign a chunk of alphabets 

to phonemes of Indonesian ethnic languages when teaching the alphabets to them 

[12]. As a result, all Indonesian ethnic languages can use the same tokens. 

Furthermore, with each phonetic development, languages belonging to the same 

language family descended from the same proto language. As a result, we assume 

a phonetic-based strategy is preferable to a character-based method. The number 

of words to be processed into tokenization is known as vocabulary size, which in 

this case refers to the number of most often occurring characters, including the 

symbol like </unk>, and whitespace. We employ a wide range of vocabulary sizes. 

The following step is the same as the first method. Figure 4.3 shows that the 

encoder and decoder input results because of character splitting from BPE in this 

illustration of the seq2seq model. This approach differs from Figure 4.2 in that the 

encoder (Indonesian word) and decoder (Minangkabau word) inputs are different. 
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Figure 4.3: SentencePiece Sequence-to-Sequence Model [18] 

The results of the chunk of characters from the BPE will vary when utilizing a 

higher vocab size. Except for alphabets, the vocabularies obtained from BPE 40 

and 100 are summarized in the Table 4.1 and 4.2. The number of vocabularies in 

Indonesian and Minangkabau is the same overall (7 and 66, respectively), the 

number of vocabularies in Indonesian and Palembang is 10 and 70 also 9 and 69, 

respectively, and the number of vocabularies in Indonesian and Minang is 10 and 

70 also 9 and 68, respectively. According to the Table 4.1, character pieces are more 

obtained if use larger vocabulary sizes. The alphabet following the “_” symbol is a 

piece of characters at the beginning of the term in vocabulary that begins with the 

"_" symbol. Example in the Minangkabau language, the difference between the 

character pieces sa and _sa is that sa indicates that the character is not at the 

beginning of the word.  

Tokenization BPE is generated by library SentencePiece [5]. The tokenization 

with vocab size=40 is done almost one by one like character-based tokenization 
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because vocab size=40 is nearly the same as the number of alphabets. The more 

vocabulary size is used, the more character pieces are generated. Tokenization 

results refer to the Table 4.1,4,3, and 4,5 that shows the words utilizing vocabulary 

size =100 there seems to be a wider variety of character pieces compared to utilizing 

vocabulary size =40. 

Table 4.1: Example of tokenization BPE with different vocabulary size 

  

Table 4.2: Vocabularies obtained from BPE Indonesian-Minangkabau 

Vocab Size=40 Vocab Size=100 
Indonesian Minangkabau Indonesian Minangkabau 

[_,n,an] [_,y,a,ng,\’n’] [_,n,an] [_,ya,ng,\’n’] 

[_pa,d,o] [_,p,a,d,a,\’n’] [_pa,do] [_pa,da,’\n’] 

[_a,d,o,la,h] [_,a,d,a,l,a,h,\’n’] [_a,do,la,h] [_a,da,la,h,’\n’] 

[_,s,a,g,i,r,o] [_,s,e,g,e,ra,’\n’] [_sa, gi, ro] [_se,g,e,ra,’\n’] 

[_,d,a,s,an,y,o] [_,d,a,s,a,r,nya,’\n’] [_,da,sa,nyo] [_,da,sa,r,nya,’\n’] 

Language  Vocabsize=40 Vocabsize = 100 
Indonesian an , ng, nya, ta, kan, _di, 

_men 
an, ng, kan, ta, _di, la, 
nya, ra, da, si, _ke, _ber, 
ti, ba, li, ga, ri, ja, er, tu, 
bu, _se, at, in, _men, 
ma, sa, _per, ka, en, di, 
wa, ku, _meng, ya, na, 
_me, _pen, te, mp, ca, 
_p, _ter, ru, du, _mem, 
de, pa, or,un, ar, ju, is, 
_ka, bi, _ko,_ma, re, on, 
_ba, _pe, _pem, tan, pu, 
gu, al, ran, asi 

Minangkabau an, ang, _pa, _di, _ma, _ba, 
ng 

an, ng, _di, _ba, ra, si, 
la,_pa, nyo, _ka, ta, da, 
ang, _ma, ik, kan, li, ri, 
ti, ak, tu, ka, _sa, _man, 
ja, ah, _ta, bu, ga, ek, in, 
ba, ku, sa, ma, su, di, ru, 
ya, _a, mp, _pan, to, wa, 
pa, ca, ran, du, ro, lu, 
tan, lo, mba, angan, ju, 
bi, pu, re, han, en, te, do, 
de, ko, gu, gi, _mam 
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Table 4.3. Example of tokenization BPE with different vocabulary size 

 

Table 4.4: Vocabularies obtained from BPE Indonesian-Palembang 

 

 

Vocab Size=40 Vocab Size=100 
Indonesian Palembang Indonesian Palembang 
[_,c,a,b,a,i] [_,c,a,b,i,k,\’n’] [_,ca,b,a,i] [_,c,a,b,ik’n’] 

[_s,e,d,e,r,e,t] [_ba,d,e,r,e,t,\’n’] [_se,de,r,e,t] [_ba,de,r,e,t’\n’] 

[_,a,d,i,l] [_,a,d,e,l,\’n’] [_,a,di,l] [_a,de,l’\n’] 

[_,b,at,a,s,nya] [_ba,t,a,s,nye’\n’] [_ba, ta,s, nya] [_ba,t,as,nye\n’] 

[_,a,d,a,p,u,n] [_,a,d,e,p,u,n’\n’] [_,a,da,p,un] [_,a,de,p,un’\n’] 

Language  Vocabsize=40 Vocabsize = 100 
Indonesian an, kan, nya, ng, _ber, _di, 

_pe, ang, si, at 
an, kan, ng, nya, _ber, 
_di, at, ta, si, la,  
ang, _se, er, da, ga, _ke, 
ja, in, tu, _men, bu, 
 ar, ti, _meng, ah, en, 
_per, ca, wa, ri, mp, _p, 
 di, li, _ter, _ba, _mem, 
un, sa, as, ya, ak, ma,  
is, du, al, _per, ju, or, ku, 
_ka, ru, lu, de, us, ur, 
 mu, _te, na, gu, ik, ung, 
_pen, _ma, te, el, _be, 
on, _sa, nda 

Palembang an, ke, ng, nye, _ba, at, ang, 
_di, la 

an, ke, nye, ng, _ba, at, 
_di, ang, ak, ar, _n, 
_me, si, _ta, _se, _pe, 
da, ja, en, ah, _be, _p, 
er, as, mp, al, li, in, ek, 
am, ti, _ke, _te, la, de, 
tu, _ka, _g, di, _sa, du, 
ur, te, wa, _ma, or, ju, 
su, on, un, ok, ap, ik, _c, 
uk, ung, _pa, ut, se, ge, 
is, _da, _bu, _nga, lu, 
us, _tu, gha, asi 
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Table 4.5: Vocabularies obtained from BPE Indonesian-Malay 

 

Table 4.6: Vocabularies obtained from BPE Indonesian-Malay 

 

Vocab Size=40 Vocab Size=100 
Indonesian Malay Indonesian Malay 
[_,a,k,t,a] [_,a,k,t,e,\’n’] [▁, ak, ta] [▁a, k, te, \’n’] 

[_ber,k,i,s,ar] [_be,k,i,s,a,\’n’] [▁ber, k, is, ar]  [▁be, k, i, sa, 
\’n’]  

[_,s,y,u,k,u,r,an] [_,s,y,u,k,o,r,an,\’n’] [▁, s, y, uk, ur, 
an]  

[▁, s, y, u, k, o, r, 
an, \’n’] 

[_,t,e,b,i,ng] [_,t,e,b,e,ng,’\n’] [▁te, b, ing]  [▁te, be, ng, \’n’]
  

[_ber,t,a,j,u,k] [_be,ta,j,o,k’\n’] [_ber,ta,ju,k] [_be,ta,j,ok’\n’] 

Language  Vocabsize=40 Vocabsize = 100 
Indonesian _an, _di, ng, _ber, ar, kan, 

nya, si, ang, at 
an, _di, _ber, ng, kan, 
nya, ar, da, si, at, _se, ta, 
ti, ang, la, en, _ter, _ke, 
ah, in, ra, al, _ba, li, ak, 
tu, ri, ur, er, di, or, sa, 
_ka, as, un, is, ga, _te, 
du, ung, ku, am, us, _bu, 
ju, ing, asi, on, _pe, um, 
_ja, _be, _per, ir, uk, ya, 
_de, ru, _bi, te, lah, ut, 
ek, _ga, se, _tu, kat, ol, 
_ta, gu 

Malay _ng, an, _di, _be, la, ba, 
kan, ta 

_di, ng, an, _be, kan, la, 
ra, nye, ta, _te, _se, si, 
ba, da, ka, _a, at, ti, ga, 
_ke, sa, ri, _ba, te, wa, 
ma, li, ja, ang, tu, ge, se, 
de, ya, _pe, pe, ku, na, 
re, ke, _ka, be, _ta, di, 
_bu, _tu, to, _ha, pu, ju, 
lu, nd, al, in, du, ong, ok, 
_sa, pi, _per, bo, gi, _bi, 
_pa, mpa, lah, on, _ma 
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Chapter 5 Evaluation and Discussion 
 

5.1 Data Set 

The secondary data is obtained from Nasution et al. [10] and Koto et al [4] with 

a total of 13,761-word translation pairs. Pre-processing the data is completed by 

deleting duplicate word pairs and constructing an array of word pairs in the form 

of a data type dictionary given by Python. Because in this case, there are various 

word pairings of Indonesian to Minangkabau that have several meanings. A 

dictionary is made up of a set of key-value pairs. Each key-value pair corresponds 

to a certain value Baidalina et al. [1]. The data is validated to Minang speakers after 

the duplicate data has been removed. As a result, there are 10277 translation pairs 

in the complete set of data. In other experiments to create an Indonesian-

Palembang and Indonesian-Malay, unfortunately we have a lack of training data. 

The secondary data is also obtained from [10] in Indonesian-Palembang there are 

5098 translation pairs, then divided into 80% of training, and 20% of testing. There 

are 4078 translation pairs Indonesian-Palembang in the training data set and 1020 

in the testing data set. In Indonesian-Malay is 5229 translation pairs, divided into 

4183 training, and 1046 testing data set. The model’s performance is evaluated 

using a 5-Fold Cross-Validation.  

Table 5.1: Summarizing the dictionary sizes and test and training data sizes. 

 

 

 

 

Language 
Pairs 

Total Translation 
Pairs 

Training 
Data 

Testing 
Data 

Number of 
Tokens 

Indonesian-
Minangkabau 

10277 8221 2056 28 and 31 

Indonesian-
Palembang 

5098 4078 1020 28 and 29 

Indonesian-
Malay 

5229 4182 1046 27 and 30 
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5.2 Evaluation Method by K-Fold Cross Validation 

In this study, validation will be carried out using K-Fold. Cross. The original 

data are randomly divided into k for validation. In machine learning, cross 

validation is an approach to determine whether a model has good generalizations, 

as shown in figure 5.1 . (Able to have good performance on unseen examples). 

Cross validation is a validation technique used to determine whether the 

network model can generalize data from the training phase into independent data. 

This technique is frequently used to assess how accurate the outcomes provided by 

the predictor model throughout the training phase are in the context of forecasting 

and prediction.  

 

 

 

 

 

 

 

 

Figure 5.1: K-Fold Cross Validation (source: scikit-learn.org) 

5.3 Parameter Design 

In the first method, two models to find translation word pairs will be examined 

by Bidirectional Long Short-Term Memory, and Long Short-Term Memory to 

improve and compare performance with previous research [2]. We utilize the 

parameters selected for both models in Table 5.2. In this case, the implemented 

learning rate schedule technique is learning rate decay, we choose an initial 

learning rate, then reduce it progressively according to a scheduler. We set a 

learning rate is 0.001, then the learning rate decreases by 1% for every epoch above 

the 15th. A slower learning rate may allow the model to acquire a more optimal or 

even globally optimal set of weights, but it will take much longer to train the model. 
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Table 5.2: Model Parameter 

Character Level and SentencePiece with BPE 

Parameter BiLSTM  LSTM 

Embedding 
Size 

512 512 

Epoch 80 80 

Batch Size 64 64 

5.4 Baseline 

The use of LSTM for bilingual lexical induction has been studied in the 

biomedical field [2]. Angiography:angiografie, intracranial:intracranieel, cell 

membrane:celmembraan, and epithelium:epitheel are a few examples of English-

Dutch translation pairs in the biomedical field. Their study uses a feed-forward 

neural network to perform binary classification tasks. They use a fully connected 

feed-forward neural network to the concatenation of source and target, which is 

provided as input to the network, to integrate these word-level and character-level 

representations.  

 

 

 

 

 

 

 

 

 

Figure 5.2: Illustrations of the classification component with feed-forward networks of different 

depths [2] 

In the above figure they have two architecture models. Part a is the number of 

layers between the representation layer and the output layer (H), they set to 0, it 

means there are no hidden layer. rST representations the source and target in word 

level and character level. On the other hand, at the word level, the classifier must 

combine the embeddings of the source and target words in order to make an 
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informed choice rather than merely computing a weighted sum of them, therefore 

in part B they use two hidden layers.  

The binary classification task in their study with the input is a pair of words, and 

the output is a number between 0 and 1. An output value close to 1 means, they are 

likely each other’s translations (in machine learning this is also called a positive 

example). Values close to 0 mean that the model thinks the input is just a pair of 

random words (a negative example). Here’s a simple example translate between 

English and Dutch and the following are the source and target vocabularies: 

𝑉𝑺= [the, cat, mat, dog ] 

 𝑉𝑻 = [de, het, kat, hond ]   

In theory, any combination of a word in the source vocabulary and a word in the 

target vocabulary would be a valid input:  

𝑉𝑺 𝑥 𝑉𝑻 = (the, de), (the, het), (the, kat), (the, dog), (cat, de), (cat, het), …… 

(dog, hond) 

However, when the vocabularies are large will have many pairs to feed to the 

classifier. Thus in practice they use two heuristics to only select the most promising 

pairs. Their first heuristic is to only select pairs which have a low character-level 

edit distance (i.e., they pair words that ‘look’ the most similar) and second heuristic 

is to select pairs that have similar multilingual embeddings. Then, feed the union 

of candidates heuristics 1 and 2 to the classifier. Example: 

candidates heuristic 1 = (the, het), (cat, kat), (mat, kat), (dog, de) 

candidates heuristic 2 = (the, de), (cat, kat), (mat, dog), (dog, hond) 

Even, they method is different to create a classifier that predicts whether a pair 

of words is a translation, on the other hand their study also wants to find 

translation. Their study utilizing LSTM network become a basis for our research.  
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5.5 Evaluation Result 

Table 5.3 : Evaluation of  SentencePiece with BPE in Indonesian-Minangkabau 

 

 

 

 

 

 

 

This study uses two scenarios to find the optimal seq2seq model with the best 

performance. When comparing the character level and SentencePiece approaches 

with the seq2seq model, the character level seq2seq method generates a more 

accurate translation of word pairs. 

Table 5.4: Evaluation of character-level model in Indonesian-Minangkabau 

According to the Table 5.2 and Table 5.3, the results demonstrate that character-

level tokenization, as opposed to BPE tokenization, is more useful for translating 

words to words. The vocabulary size has a minimum and maximum value. The 

minimum number necessary for this experiment data is 33. The experiment was 

run seven times with different vocabulary sizes, the maximum vocabulary size used 

was 300. When utilizing a minimal vocabulary size in BPE, it indicates that the 

number of tokens is approximately the same as character level based. 

However, as shown in Table 5.2, the tokenization outcomes from the source and 

target pairs will vary more as the vocabulary size increases, which has an impact on 

the BPE performance outcomes. Perhaps, because the vector length is shortened, 

the data is likely to be less informative, making it more difficult for the model to 

Vocab 
Size 

K-Fold Cross-Validation 
K = 1 K = 2 K = 3 K = 4 K = 5 Average 

33 79.96 76.55 78.84 81.71 80.78 79.56 
35 76.11 76.89 79.42 74.31 80.73 77.49 
40 72.12 72.88 75.23 75.99 71.64 73.59 
50 67.12 62.15 66.97 67.41 64.29 65.58 
80 58.73 59.32 53.35 54.12 56.47 56.39 
100 49.36 48.24 49.46 49.70 48.78 49.10 
300 34.85 34.93 30.31 35.76 36.19 34.40 

Method 
K-Fold Cross-Validation 

K = 1 K = 2 K = 3 K = 4 K = 5 
Ave-
rage 

BiLSTM 
(encoder), 

LSTM 
(decoder) 

84.72 83.7 82.67 83.6 87.5 83.92 

LSTM (encoder 
& decoder) 

76.79 74.56 77.82 78.21 75.87 76.65 



 

 

 

 22 

recognize. In general, the larger the vocabulary size, the higher the results. It is also 

probably because the data is word-to-word pairs translation instead of sentence to 

sentence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Comparison between SentencePiece with BPE and Character level method 

 

 

Figure 5.3 illustrates the possibilities of why the character-based method is 

superior to the BPE-based method. As shown in Table 5.3, the bigger the 

vocabulary size, the lower the translation accuracy results. For an example of the 

Minangkabau word is adolah, if we use the vocabulary size=300, the number of 

tokens decreases, while the length of the vectors representing the tokens becomes 

longer because the vectors need more expression power. 

The same methodology of character level, and BPE with Bi-LSTM Seq2Seq 

model was utilized in other experiments to create an Indonesian-Palembang, 

Indonesian-Malay. Unfortunately, we have a lack of training data. The secondary 

data is also obtained from [10] in Indonesian-Palembang there are 5098 

translation pairs, then divided into 80% of training, and 20% of testing. There are 



 

 

 

 23 

4078 translation pairs in the training data set and 1020 in the testing data set. We 

conducted three times of BPE experiment with vocabulary sizes 31, 33, 35, 40, 50, 

80, and 100. Minimum value of vocabulary size in this case is 31. In character level 

based the number of tokens in Indonesia is 28, and in Palembang is 29. First, the 

total number of translation pairs that utilized in Indonesian-Malay is 5229, divided 

into 4183 training, and 1046 testing. In this Byte Pair Encoding experiment we are 

also using the Indonesian-Palembang scenario. In this instance, the minimum 

vocabulary size is 32, and the number of tokens used in character level-based is 27 

for Indonesian, and 30 for Malay.  

We used the optimal setting of Bi-LSTM as encoder and LSTM as decoder to 

generated translation pairs in the character level based experiment on Indonesian-

Palembang and Indonesian-Malay. Additionally, we experimented with creating 

Indonesian-Minangkabau word pairs with a data size of approximately 5000 

translation pairs. There are separated into 4183 training pairs and 1046 testing 

pairs. This experiment aims to contrast the result of Indonesian-Malay and 

Indonesian-Palembang translations. The Indonesian-Minangkabau translation 

continues to have the highest yield based on the K-fold average while using only 

half the amount of data. 

 

Table 5.5: Evaluation of Character Level Model in Indonesian-Minangkabau with Half Data Size 

 

 

 

 

 

Method 
K-Fold Cross-Validation 

K = 1 K = 2 K = 3 K = 4 K = 5 
Ave-
rage 

BiLSTM 
(encoder), 

LSTM 
(decoder) 

65.96 68.54 70.65 71.79 72.37 69.89 

LSTM (encoder 
& decoder) 

46.94 48.85 45.88 52.19 57.55 50.28 
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Table 5.6: Evaluation of SentencePiece with BPE in Indonesian-Palembang 

 

 

 

 

 

 

 

 

 

 

 

Table 5.7: Evaluation of character-level model Indonesian-Palembang 

 

Table 5.8: Evaluation of SentencePiece BPE in Indonesian-Malay 

 

 

 

 

 

 

 

 

 

 

 

 

Vocab 
Size 

K-Fold Cross-Validation 
K = 1 K = 2 K = 3 K = 4 K = 5 Average 

31 63.82 58.92 64.11 61.17 63.13 62.23 

33 62.54 61.27 62.05 60.39 62.64 61.77 

35 58.13 61.66 63.23 60.98 62.64 61.32 

40 45.60 43.3 45.60 44.26 45.79 44.91 

50 37.45 37.05 39.80 41.07 39.11 38.89 

80 30.98 30.29 32.25 29.50 29.21 30.44 

100 25.88 23.33 26.66 25.58 25.29 25.34 

Method 
K-Fold Cross-Validation 

K = 1 K = 2 K = 3 K = 4 K = 5 Average 
BiLSTM 

(encoder), LSTM 
(decoder) 

63.82 62.45 63.23 60.29 62.84 62.52 

LSTM (encoder 
& decoder) 

44.31 41.47 45.19 43.43 44.41 43.76 

Vocab 
Size 

K-Fold Cross-Validation 
K = 1 K = 2 K = 3 K = 4 K = 5 Average 

32 61.95 62.04 61.66 61.56 62.23 61.88 

33 58.22 62.23 65.96 64.34 67.59 63.66 

35 51.62 55.64 59.75 57.74 59.84 56.91 

40 53.72 48.62 55.0 47.64 53.62 51.79 

50 39.16 36.04 35.55 36.13 38.04 36.58 

80 26.57 29.06 30.11 29.92 31.73 29.47 

100 21.03 22.84 23.13 23.61 24.76 23.07 
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Table 5.9: Evaluation of character-level model Indonesian-Malay 

Results of an average precision comparison of language pairings are shown in 

Figures 5.4 and 5.5. Figure 5.4 depicts the comparison result using BPE, while 

Figure 5.5 depicts the comparison result based on character level. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Comparison Language Pairs Result by BPE 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Comparison Language Pairs Result by Character level Based  

Method 
K-Fold Cross-Validation 

K = 1 K = 2 K = 3 K = 4 K = 5 Average 
BiLSTM 

(encoder), LSTM 
(decoder) 

64.72 66.15 65.20 65.96 63.38 65.08 

LSTM (encoder 
& decoder) 

47.99 39.57 40.63 46.36 49.80 44.87 
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In additional experiment, we also used the encoder settings from Indonesian-

Minangkabau with roughly ten thousand translation pairings as initial values for 

other encoder in different language pairs (Indonesia-Palembang and Indonesia-

Minangkabau). When define an input sequence , add the model that has been 

generated from Indonesian-Minangkabau character level Bi-LSTM Seq2Seq 

experiment.  

 

model_minang=keras.models.load_model(currwd_minang+f"seq2seq_{i}.h5") 

encoder_inputs = model_minang.input 

 

Table 5.9: Evaluation of character-level model Indonesian-Palembang using Initial Encoder 

 

Table 5.9.1 : Evaluation of character-level model Indonesian-Malay using Initial Encoder 

 

Figure 5.6 compares the average precision results between Indonesian-

Palembang and Indonesian-Malay using the intial encoder model from 

Indonesian-Minangkabau. In both language pairs, we are using half the data size. 

The total number of translation pairs is 5089 for Indonesian-Palembang and 5229 

for Indonesian-Malay. According on the encoder-reuse model's performance, 

reusing the existing encoder that has been trained using several language 

translations pairs (high data size) seems to be beneficial. 

 

 

Method 
K-Fold Cross-Validation 

K = 1 K = 2 K = 3 K = 4 K = 5 
Averag

e 
BiLSTM 

(encoder), LSTM 
(decoder) 

64.41 63.03 63.13 61.56 62.94 63.01 

Method 
K-Fold Cross-Validation 

K = 1 K = 2 K = 3 K = 4 K = 5 
Averag

e 
BiLSTM 

(encoder), LSTM 
(decoder) 

61.66 63.00 63.67 64.53 65.77 63.72 
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Figure 5.6: Comparison Language Pairs Result with Encoder 

 

5.6 Pattern-based Precision  

Simple rule-based performance evaluation has been done to compare with 

neural network performance result (Character level Bi-LSTM), whether the neural 

network-based performs efficiently or not. The rule-based approach is not our 

proposed. For comparing our model, use that as the baseline. Minang speakers 

provided the patterns used in the Minangkabau and Indonesian languages. Step to 

generate translation using rule-based are as follows: 

1. Remove the similar word translation pairs from the 2056 translation 

pairings. The remaining data, after the similar translation pairs are removed, 

is 1262. 

2. Determine the rules manually by regular expression. 

3. Use the rules that have been determined and apply to all source words and 

replaces rule matches with a string. 
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Below is the figure of patterns in the Indonesian-Minangkabau language: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9.1: List of Patterns in Indonesian and Minangkabau 

There are 34 patterns, except based on the above pattern number 19-20 and 21-

27 in regular expression are converted into a group by changing all first characters 

before “e” to “a” and all first characters before "er" to “a”. The group can be created 

using the regular expressions (’([aiueo]*) e’) and (’([aiueo]*) er’). Also converted 

into a group by changing all first character before “eng” to “a” and all characters 

before “eng” to “ang” in regular expression becomes ([^aiueo]*)eng ang and 

([^aiueo]*)eng a.  

 

 

 



 

 

 

 29 

Table 5.9.2: The Number of Comparisons Between Neural Network Approach and Rule-Based 

 

 

 

 

 

 

 

 

 

 

The table above shows the comparison result of simple rule based and neural 

network based. We compare it by examining some of the potential outcomes from 

data testing. According to the Table 5.9.2 the outcome of accurate translation in 

terms of the target language is true, meanwhile false is a translation inaccurate that 

is in the target language. The performance according to each pattern by comparing 

with the simple rule-based system is described in Table 5.9.3.  

Table 5.9.3. Compare performance with Simple-Rule Based 

Pattern Match 
Rule 
Based 

Match 
Neural 
Network 

Total 
of All 
Words 

Precision 
Rule 
Based 

Precision 
Neural 
Network 

First all 
character 
before eng to 
ang  19 72 89 0.21 0.81 
First all 
character 
before eng to all 
character 
before a 0 0 1 0 0 

Comparison The Possibilities of Both Method 

Neural Network 
Approach (True)  

Rule Based (True)  374 

Neural Network 
Approach (True)  

Rule Based (False)  643 

Neural Network 
Approach (False)  

Rule Based (True)  59 

Neural Network 
Approach (False)  

Rule Based (False)  186 

Total Translation Pairs 1262 
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Pattern Match 
Rule 
Based 

Match 
Neural 
Network 

Total 
of All 
Words 

Precision 
Rule 
Based 

Precision 
Neural 
Network 

First all 
character 
before er to 
befor a 94 242 291 0.32 0.83 
First all 
character 
before e to 
before a 184 422 517 0.36 0.82 
Ending uk to 
uak 

11 14 15 0.73 0.93 
Ending a to o 

98 203 259 0.38 0.78 
Ending ik to iak 

3 11 11 0.27 1 
Ending ing to  
iang 

15 20 22 0.68 0.91 
Remove last of 
character 

13 50 63 0.21 0.79 
Ending as to eh 

6 15 18 0.33 0.83 
Ending uh to 
uah 

10 11 13 0.77 0.85 
Ending uk to 
uik 

6 9 10 0.6 0.9 
Ending ung to 
uang 17 24 24 0.71 1 
Ending ap to ok 

6 10 13 0.46 0.77 
Ending at to aik 

22 54 69 0.32 0.78 
Ending at to ek 

0 0 0 0 0 
Ending ir to ia 

0 0 0 0 0 
Ending ur to ua 

0 0 0 0 0 
Ending kan to 
an 30 139 164 0.18 0.85 
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Pattern Match 
Rule 
Based 

Match 
Neural 
Network 

Total 
of All 
Words 

Precision 
Rule 
Based 

Precision 
Neural 
Network 

Ending it to ik 
4 5 6 0.67 0.83 

Ending it to iak 
0 0 0 0 0 

Ending is to ih 
0 11 12 0 0.92 

Ending ul to ua 
4 3 4 1 0.75 

Ending d to ik 
1 5 6 0.17 0.83 

Ending id to ik 
0 0 0 0 0 

Ending ih to 
iah 6 20 22 0.27 0.91 
Ending us to 
uih 4 12 16 0.25 0.75 
Ending il to ia 

3 4 5 0.6 0.8 

Total 0.34 0.66 

 

Based on table 5.9.2 compared to simple rule-based performance, neural 

network approach is superior since it allows for the generation of output 

translations with a variety of patterns. Simple rule based could not distinguish the 

patterns according to the position of index rule that has been determined. Example 

the words of darat to darek , even though we define the rule = ending at to ek but 

based on index rule, the rule “ending at to aik “is in index position before rule at to 

ek. Therefore, the result in that rule is not found. 

Using half data size, and even with a total data set of 2.000-Indonesia-

Minangkabau word pairings, comparison studies between Rule-based as baseline 

and Neural Network models were also conducted. The steps are the same as in the 

10.000 translation pair experiment. The only difference on 5000 translation pair 

data is this step, which remove the similar word translation pairs from the 1046 

translation pairings. The remaining data, after the similar translation pairs are 

removed, is 641. Below is the table result of comparisons between Neural Network 

and Rule-based using half data size translation pairs.  
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Table 5.9.4: Neural Network Approach and Rule-Based 5000 Translation Pairs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on Table 5.9.4 Neural Network approach still outperforms the Rule-

based with 267 pairs of words that are correctly translated. The performance 

according to each pattern is shown in Table 5.9.5.  

 

Table 5.9.5: Compare performance with Simple-Rule Based 

 

Match 
RB 

Match 
NN 

Total Precision 
RB 

Precision 
NN 

First all character 
before eng to ang  

13 16 25 0.52 0.64 
First all character 

before eng to all character 
before a 0 0 0 0 0 

First all character 
before er to befor a 

18 36 56 0.32 0.64 
First all character 

before e to before a 
60 88 137 0.44 0.64 

Comparison The Possibilities of Both Method 

Neural Network 
Approach (True)  

Rule Based (True)  179 

Neural Network 
Approach (True)  

Rule Based (False)  267 

Neural Network 
Approach (False)  

Rule Based (True)  53 

Neural Network 
Approach (False)  

Rule Based (False)  142 

Total Translation Pairs 641 
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Ending uk to uak 
2 3 3 0.67 1 

Ending a to o 
23 43 66 0.35 0.65 

Ending ik to iak 
1 3 4 0.25 0.75 

Ending ing to  iang 
4 5 6 0.67 0.83 

Remove last of 
character 2 8 11 0.18 0.73 

Ending as to eh 

2 4 7 0.29 0.57 
Ending uh to uah 

4 5 5 0.8 1 
Ending uk to uik 

0 0 1 0 0 
Ending ung to uang 

5 3 6 0.83 0.5 
Ending ap to ok 

0 1 1 0 1 
Ending at to aik 

1 6 6 0.17 1 
Ending at to ek 

0 0 0 0 0 
Ending ir to ia 

0 0 0 0 0 
Ending ur to ua 

0 0 0 0 0 
Ending kan to an 

14 23 35 0.4 0.66 
Ending it to ik 

1 3 3 0.33 1 
Ending it to iak 

0 0 0 0 0 
Ending is to ih 

0 3 4 0 0.75 
Ending ul to ua 

1 2 3 0.33 0.67 
Ending d to ik 

0 0 0 0 0 
Ending id to ik 

0 0 0 0 0 
Ending ih to iah 

4 6 8 0.5 0.75 
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Ending us to uih 

2 2 4 0.5 0.5 
Ending il to ia 

0 1 2 0 0.5 

 

For the index rule sequence created based on the same regular expression as the 

experiment with around 10.000 translation pairs. There are fewer patterns that do 

not have translation pairs because of the amount of the data used.  

We experimented with a smaller sample size of 2569 Indonesian-Minangkabau 

translation pairings. They are divided into 2055 training data and 514 testing data. 

The average outcome utilizing character level Bi-LSTM and K Fold Validation is 

shown below. 

 

Table 5.9.6: Result of Character Level Model in Indonesian-Minangkabau 2.000 Data Size 

 

The first step to compare with Rule-based is remove the similar word translation 

pairs from the 514 translation pairings. After similar translation pairings are 

removed, 312 pairings are left. Then the next step is similar to the experiment above. 

Comparison results of simple rule-based and neural network based is shown in 

table 5.9.7 and the performance according to each pattern by comparing with the 

simple rule-based system is described in Table 5.9.8. 

 

 

 

 

 

 

 

 

Method 
K-Fold Cross-Validation 

K = 1 K = 2 K = 3 K = 4 K = 5 Average 
BiLSTM 

(encoder), LSTM 
(decoder) 

55.44 57.78 64.20 64.00 66.34 61.55 
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Table 5.9.7: Neural Network Approach and Rule-Based 2.000 Translation Pairs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.9.8: Neural Network Approach and Rule-Based 2.000 Translation Pairs 

 

Match 
RB 

Match 
NN 

Total Precision 
RB 

Precision 
NN 

First all character 
before eng to ang  

13 16 25 0.52 0.64 
First all character 

before eng to all character 
before a 0 0 0 0 0 

First all character 
before er to befor a 18 36 56 0.32 0.64 

First all character 
before e to before a 60 88 137 0.44 0.64 

Ending uk to uak 
2 3 3 0.67 1 

Ending a to o 
23 43 66 0.35 0.65 

Ending ik to iak 
1 3 4 0.25 0.75 

Ending ing to  iang 
4 5 6 0.67 0.83 

Comparison The Possibilities of Both Method 

Neural Network 
Approach (True)  

Rule Based (True)  87 

Neural Network 
Approach (True)  

Rule Based (False)  107 

Neural Network 
Approach (False)  

Rule Based (True)  36 

Neural Network 
Approach (False)  

Rule Based (False)  82 

Total Translation Pairs 312 
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Remove last of 
character 2 8 11 0.18 0.73 

Ending as to eh 
2 4 7 0.29 0.57 

Ending uh to uah 

4 5 5 0.8 1 
Ending uk to uik 

0 0 1 0 0 
Ending ung to uang 

5 3 6 0.83 0.5 
Ending ap to ok 

0 1 1 0 1 
Ending at to aik 

1 6 6 0.17 1 
Ending at to ek 

0 0 0 0 0 
Ending ir to ia 

0 0 0 0 0 
Ending ur to ua 

0 0 0 0 0 
Ending kan to an 

14 23 35 0.4 0.66 
Ending it to ik 

1 3 3 0.33 1 
Ending it to iak 

0 0 0 0 0 
Ending is to ih 

0 3 4 0 0.75 
Ending ul to ua 

1 2 3 0.33 0.67 
Ending d to ik 

0 0 0 0 0 
Ending id to ik 

0 0 0 0 0 
Ending ih to iah 

4 6 8 0.5 0.75 
Ending us to uih 

2 2 4 0.5 0.5 
Ending il to ia 

0 1 2 0 0.5 

 

According to all experiments, the neural network approach result outperforms 

the simple rule-based. As is well known that the rule-based approach is unable to 
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distinguish the position of the index rule. Additionally, we do not use a specific 

strategy in this experiment to identify where the index rule created by regular 

expression should be placed. Therefore, that it also has an impact on rule-based 

performance. This experiment section is to show well the proposed model can 

reproduce the well-known pattern compared to the simple rules based as baseline.  
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 Chapter 6 Conclusion 
 

In case to translate word to word pairs, it can be argued that the neural network 

approach utilizing a sequence-to-sequence model is better able to extract 

Indonesian-Minangkabau language patterns with a distinct number of tokens 

based on character basis. Character level seq2seq method (Bi-LSTM as encoder 

and LSTM as decoder) outperforms SentencePiece byte pair encoding (vocab size 

of 33) according to a comparison of the two methods utilized, which has an average 

precision of 79.56% compared to 83.92% for character level seq2seq method. Lack 

of training data was one of the obstacles in the experiment to create an Indonesian-

Palembang dictionary, the best outcomes were obtained from the Character level 

seq2seq method (Bi-LSTM as encoder and LSTM as decoder) with an average 

precision of 62.52%. The best setting (character level embedding with the Bi-LSTM 

as encoder and LSTM as decoder) shows a good result for four other Indonesian 

ethnic languages even with about half size of input dictionaries (Palembang, 

Malay) with the average precision of 65.2% and 65.08%, respectively. The 

performance of the encoder-reuse model it seems useful to reuse the exiting 

encoder trained by different language translation pairs. The result of average 

precision in Indonesian-Palembang, and Indonesian-Minangkabau using encoder-

reuse model is 63.01% and 63.72%. In the future, we would like to apply this 

method to other Indonesian ethnic languages that might not only demand the same 

pattern. 

Additionally, compared to simple rule-based performance, neural network 

methodology is superior since it allows for the generation of output translations 

with a variety of patterns.  
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