

2022

MASTER THESIS

A Neural Network Approach to

Bilingual Dictionary Induction for

Indonesian Ethnic Languages

ACADEMIC SUPERVISOR: MURAKAMI Yohei

Graduate School of Information Science and Engineering

Ritsumeikan University

MASTER’S PROGRAM

MAJOR in Advanced Information Science and Engineering

STUDENT ID: 6611200091-8

NAME : KARTIKA Findra Resiandi

 i

A Neural Network Approach to Bilingual Dictionary

Induction for Indonesian Ethnic Languages

Kartika Findra Resiandi

Abstract

Indonesian ethnic languages are endangered. The most important stage in

enriching low-resource languages is to create a bilingual dictionary. It has been

demonstrated that the constraint-based technique aids in the induction of bilingual

lexicons from two bilingual dictionaries via the pivot language, especially for the

closely related ones. However, a common concern with the pivot-based approach

if there are any mistakes made in the source-to-pivot translation will be carried

over to the pivot-to-target translation. Furthermore, the low number of

dictionaries for the input and the small size of the input dictionaries limit the

number of the generated translation pairs.

Therefore, we proposed a neural network approach to create a bilingual

dictionary between ethnic languages by extracting transformation rules of

translation pairs. Once acquiring the rules, we can generate many translated words

from a source word list. For example, between Indonesian and Minangkabau, the

last phoneme "a" in Indonesian tends to turn "o" in Minangkabau, or the middle

phoneme "ia" appears to turn "i", and many more. To this end, we employed a

sequence-to-sequence model, where the encoder reads the input word and then

extracts a feature of the input while the decoder generates a translated word from

the feature. In this research, we focus on ethnic languages that have closely related

to Indonesian. This research addresses the following two research issues.

Effective word tokenization for translating word pairs

In a sequence-to-sequence model, the encoder and decoder need to receive and

generate a word as sequence data, respectively. Although the simplest sequence

data is a sequence of characters, the length of the sequence becomes long.

Therefore, we need to find effective tokenization to balance the kinds of tokens and

the length of the sequence.

Low Resource Language has Low Data Size

 ii

There are several types of neural network architecture that receive sequence

data as a word. Moreover, translation pairs data for training are small. Therefore,

we need to adjust neural network architecture and model parameters such as epoch,

batch size, and learning rate to prevent the model from overfitting and to improve

the accuracy of the model.

To address the first issue, this research used Bi-LSTM as the encoder and LSTM

as the decoder processes. We must identify the kind of tokens that are useful for

extracting the transformation patterns. The first approach by character-level one

hot embedding and the second approach uses the SentencePiece which

implements Byte Pair Encoding where vocabulary size is required for the

tokenization, which will have an impact on the input to the encoder and decoder.

To adjust network architecture and model parameters, we implemented

learning rate schedule technique is learning rate decay. We set a learning rate is

0.001 then the learning rate decreases by 1% for every epoch above the 15th

We validated the proposed method by applying it to three language pairs from

Indonesian to ethnic languages with fewer word pair translations: Indonesian to

Minangkabau, Palembang, and Malay.

The following are the research's contributions:

Effective word tokenization for translating word pairs

Our character level model performance with an average precision of 83,92%

outperforms Byte Pair Encoding (with vocabulary size from 33 to 300) models. We

tried 7 times experiment with various vocabulary sizes, the maximum size used is

300. In general, the results are higher when the vocabulary is larger. However, the

experimental results showed approximately the same vocabulary size as character

level based achieved the highest performance among BPE models. Our neural

network architecture works effectively for three Indonesian ethnic languages even

with about half the size of input dictionaries (Minangkabau, Palembang, Malay)

with an average precision of 74,6% 65.2%, 65.08% respectively.

Low Resource Language has Low Data Size

We also compare performance according to each pattern with a simple rule-

based. The neural network approach outperforms the simple rule-based with an

average precision of 66% and 34%.

 iii

A Neural Network Approach to Bilingual Dictionary

Induction for Indonesian Ethnic Languages

Chapter 1 Introduction 1

Chapter 2 Related Work 3

2.1 Bilingual Dictionary Induction ·· 3

2.2 A Neural Network Approach ·· 4

Chapter 3 Sequence-to-Sequence Model 5

3.1 Overview ··· 5

3.2 Long Short-Term Memory (LSTM) ·· 5

3.3 Bi-Directional Long Short-Term Memory (Bi-LSTM) ························· 7

Chapter 4 Tokenization for Sequence-to-Sequence Model 9

4.1 Character Level Sequence-to-Sequence Model ·································· 9

4.2 Byte Pair Encoding-based Tokenization ·· 11

4.2.1 SentencePiece ··· 11

4.2.1 BPE-Based Tokenization in Indonesian Ethnic Languages ········· 12

Chapter 5 Evaluation and Discussion 17

5.1 Data Set ·· 17

5.2 Evaluation Method by K-Fold Cross Validation ······························· 18

5.3 Parameter Design ·· 18

5.4 Baseline ·· 19

5.5 Evaluation Result ·· 21

5.6 Pattern-based Precision ·· 27

Chapter 6 Conclusion 38

Acknowledgments 39

References 40

 1

Chapter 1 Introduction
Indonesia’s riches extend beyond natural resources such as minerals,

vegetation, and fauna. Furthermore, the archipelago’s culture is highly diversified,

and so does a variety of ethnic languages in Indonesia. The Austronesian language

family includes Indonesian, derived from the Malay language. Since prehistoric

times, Indonesian ethnic languages have developed, resulting in a different

language for each ethnic group in Indonesia [12].

Currently, the phenomenon of ethnic language extinction in Indonesia has

become a problem that grabs the attention of scholars, especially linguists. The

Summer Institute of Linguistic states that the local languages are endangered and

may cease to be spoken in Indonesia. The most important stage in enriching low-

resource languages is to create a bilingual dictionary. It has been demonstrated that

the constraint-based technique aids in the induction of bilingual lexicons from two

bilingual dictionaries via the pivot language, especially for the closely related ones.

However, a common concern with the pivot-based approach if there are any

mistakes made in the source-to-pivot translation will be carried over to the pivot-

to-target translation. They will be produced in all the target languages.

Therefore, we started the Indonesia Language Sphere project that aims at

comprehensively creating bilingual dictionaries between the ethnic languages

using a neural network approach in order to conserve local languages on the verge

of extinction [6] As an expected result, the vocabulary of the ethnic language will

expand, more people will learn it, and if there are no more speakers in the future,

the language will become extinct. The current case for experiment focuses on

Indonesian to Minangkabau, Palembang, and Malay languages, because the

languages have a very high similarity with Indonesian, their geographical

proximity is also near, as they are both in the Indonesian province of Sumatera,

and since most of the nationalist writers who contributed to the early development

of Indonesian were of Minangkabau ethnicity. Minangkabau language (closely

linked to Malay) significantly influenced Indonesian in its formative years [10].

 2

Because the Indonesian ethnic language is a low resource language, and it has a

limited amount of data, we chose Minangkabau as the language to implement the

proposed method in this study. We tried the Palembang and Malay language while

learning the Minangkabau language with a neural network model, despite the lack

of data. The Indonesian and Minangkabau languages have significant similarities,

between two languages, we presume they have several phonetic transformation

rules. For example, there appears to be a rule in Indonesian and Minangkabau that

the last phoneme ”a” in Indonesian tends to turn ”o” in Minangkabau, while the

middle phoneme “ia” appears to turn “i”. There are many more patterns in the

language. Although this rule isn’t always applicable, it can help predict a rough

translation as a preliminary translation. This study predicts the translation using

character level embedding, compared to the SentencePiece method using the Bi-

LSTM sequence-to-sequence model. Besides that, in this study we also compare

the neural network performance with simple rule based as baseline to compare our

model. When compared to simple rules, how effectively the proposed model can

reproduce the well-known pattern.

 3

Chapter 2 Related Work

This chapter explains the background of the study, the challenges of developing

bilingual dictionary induction, and reference research.

2.1 Bilingual Dictionary Induction

Creating a bilingual dictionary is the first crucial step in enriching low-resource

languages. Especially for the closely related ones, it has been shown that the

constraint-based approach helps induce bilingual lexicons from two bilingual

dictionaries via the pivot language [7, 8]. The low number of dictionaries for the

input and the number of the generated translation pairs depends on the size of the

input dictionaries. However, implementing the constraint-based approach on a

large scale to create multiple bilingual dictionaries is still challenging in

determining the constraint-based approach’s execution order to reduce the total

cost. Plan optimization using the Markov decision process is crucial in composing

the order of creation of bilingual dictionaries considering the methods and their

costs [9, 11].

In this research, we would like to extract transformation rules from the

Indonesian to Minangkabau language. Table 1 shows the example of Indonesia

Minangkabau dictionary.

Table 1. Example of Indonesian-Minangkabau words

Indonesian Minangkabau

Apa Apo

Merupakan Marupokan

Kesudahannya Kasudahnyo

Patuang Patung

Balik Baliak

Menderita Mandarito

Panas Paneh

Sekelilingnya Sakaliliangnyo

 4

2.2 A Neural Network Approach

Heyman et al. [2] have proposed a method to make bilingual lexical induction

as a binary classification task in the biomedical domain for English to Dutch. They

create a classifier that predicts whether a pair of words is a translation using

character and word level, LSTM method. This study reveals that character-level

representations successfully induce bilingual lexicons in the biomedical domain. In

the charpairs experiment, the total average F score for the test data consisting of

translation pairs with Greek or Latin origin is 55.04. Character level encoder

representation in charpairs is their technique. The word level in this example is

unrelated to this study, however they do have four experiments that mix the word

and character levels.

Recently, deep learning is the most popular approach, utilize sequence-to-

sequence learning, which consists of an encoder and a decoder [15]. Zhang et al.

[17] presented a character-level sequence-to-sequence learning approach proposed

in this study. RNN is the encoder-decoder technique used to generate character-

level sequence representation for the task of English-to-Chinese. For the

construction of an RNN encoder-decoder in the field of machine translation [19],

Yang et al. [20] developed the encoder Bidirectional LSTM and the decoder LSTM

based sequence-to-sequence model. Wazery et al [21] utilizing Sequence-to-

Sequence model with encoder as BI-LSTM and LSTM as decoder to summarize the

Arabic text. They also compare with GRU and LSTM. Bi-LSTM is the best result by

BLEU score is 0.41.

 5

Chapter 3 Sequence-to-Sequence Model

3.1 Overview

Deep learning techniques called sequence-to-sequence are employed to address

machine translation issues. Sequence-to-sequence (Seq2Seq) is a model based on

recurrent neural network that predicts the words in the output one at a time, which

will then be integrated into a sentence, after reading each word from an input

sentence one at a time. Two Recurrent Neural Networks (RNN), the encoder and

decoder combine to generate the Seq2Seq model. The target sequence is generated

by the decoder using the context vector as the "seed" by the encoder's RNN network,

which encodes the input sequence into a fixed-size context vector. Therefore, the

Seq2Seq model is often also referred to as the encoder-decoder model. RNN have

a difficulty called vanishing gradients, which is why some sequence-to-sequence

models use a development of recurrent neural networks called long short-term

memory (LSTM) [17]. LSTM has also been used frequently to represent intelligence

in language processing.

Figure 3.1: Se2Seq Model consisting of LSTM and Bi-LSTM [21]

3.2 Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) is an upgraded Recurrent Neural

Network (RNN) that is used to overcome the problem of vanishing and exploding

gradients [3]. LSTM addresses the problem of long-term RNN reliance, in which

 6

RNNs are unable to predict input data stored in long-term memory but can make

more accurate predictions based on current information. The LSTM architecture

can store large amounts of data for lengthy periods of time. They are applied to

time-series data processing, forecasting, and categorization. Memory cells and gate

units are the key components of the LSTM architecture. Forget gate, input gate,

and output gate are the three types of gates in an LSTM. Figure 3.1 illustrates the

structure of the LSTM model.

Figure 3.2: Unit structure of the LSTM [18]

Cell memory tracks the dependencies between components in the input

sequence. New values that enter the cell state are handled by the input gate. The

LSTM unit utilizes a forget gate to select the value that remains in the cell state. The

value in the cell state that remains will be sent to the output gate, where the LSTM

activation function, also known as the logistic sigmoid function, will be used to start

the calculation. The tanh and sigma symbols represent the types of activation

functions employed in the neural network's training layers.

Allowing information to flow through it unmodified, a sigmoid gate, which

restricts how much information may pass through, is another essential feature of

LSTM. The outputs of the sigmoid layer, which vary from zero to one, specify how

much of each component should be permitted to pass. The equation that controls

the LSTM flow is as follows:

𝑓𝑡 = 𝜎(𝑤𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓

𝑖𝑡 = 𝜎(𝑤𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖

𝐶𝑡 = tanh (𝑤𝑐 ∙ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑐

 7

C̃t = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡

𝑜𝑡 = 𝜎(𝑤𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ𝐶𝑡

where

𝑜𝑡 : at time t, ouput gate

𝑖𝑡 : at time t, input gate

ℎ𝑡 : output at time t

𝑓𝑡 : forget gate, at time t

𝑥𝑡 : input at time t

𝜎 : sigmoid function

𝐶𝑡 : the state of the cell at time t

𝑤𝑜,𝑤𝑓 , 𝑤𝑖 , 𝑤𝑐 : weights that have been trained

𝑏𝑐 , 𝑏𝑖 , 𝑏𝑓 : trained biases

3.3 Bi-Directional Long Short-Term Memory (Bi-LSTM)

RNN has an advantage in the reliance between coding inputs. However, LSTM

has an advantage in resolving RNN’s long-term issues. Improvements are made

with Bi- RNN because only one direction of previous contextual information can

be used by LSTM and RNN [13]. As a result of the advantages of each technique,

the LSTM form is kept in the cell memory, and Bi-RNN can process information

from the previous and next contexts, resulting in Bi-LSTM [13]. Bi-LSTM can

leverage contextual information and generate two separate sequences from the

LSTM output vector. Each time step’s output is a mixture of the two output vectors

from both directions, as the Figure 3.3 below, where ℎ𝑡 is the forward or backward

state [16]. The Bi-LSTM network computes the output vector sequence = (𝑦1, 𝑦2,..,

𝑦n) and the hidden vector sequence h = (h1, h2 , ... , hn). The semantic representation

of the input sequence is thoroughly examined by Bi-LSTM in both directions. In

contrast to the decoder, which seems sequential from right to left, the encoder's

process appears sequential from left to right.

Forward hidden is represented in a symbol ℎ⃗ and backward hidden is

represented by the symbol ℎ⃖⃗. Following the equation below, the forward hidden

 8

sequence and the backward hidden sequence are iterated at each time step. For the

front layer in the first equation, iteration begins at t = 1 and continues through N.

ℎ⃗ = H (𝑏ℎ⃗⃗ + 𝑊ℎ⃗⃗ ℎ⃗⃗ ℎ
⃗⃗⃗

𝑡−1 + 𝑊𝑥ℎ⃗⃗ 𝑋𝑡) (1)

ℎ⃖⃗ = H (𝑏ℎ⃗⃗⃖ + 𝑊ℎ⃗⃗⃖ ℎ⃖⃗𝑡−1 + 𝑊𝑥ℎ⃗⃗⃖𝑋𝑡) (2)

Iteration for the backward layer in the second equation begins at 𝑡 = 𝑁 and goes

to 1. In all parameters, forward layers are represented by arrows pointing left to

right, and backward layers by arrows pointing right to left. In order to encode the

information, the letters in the input are first represented as 𝑡 − 𝑡ℎ and then

encoded in ℎ𝑡. W and b are variables that represent the weight of the matrix and

the bias vector, respectively. Figure 3 depicts the combination of LSTM and Bi-

RNN.

Figure 3.3: Bi-LSTM Architecture [18]

 9

Chapter 4 Tokenization for Sequence-to-Sequence

Model

4.1 Character Level Sequence-to-Sequence Model

 The first approach is using character level one hot embedding where words will

be separated as characters, and each vector has the same length size adjusted by

total characters. Then, sequence-to-sequence (Seq2Seq) model, which employs

RNN encoders and decoders. In this study, Bi-LSTM encoder and decoder

processes are employed. The Bi-LSTM encoder creates a representation of the

input words by parsing each character of the word in the source language

(Indonesian). The LSTM decoder uses the encoder's output as input and outputs

the target language character by character (Minangkabau). Figure 4.1 describe the

example of Indonesian word “ada” change into character level one hot embedding

vectorization with the same size of all characters.

Figure 4.1: Example of one hot embedding vector

The character-level encoder computes a vector representation from a word of

character sequences in the source language. Replace each character by a one-hot

vector. A one-hot vector is a vector with all zeros except at the dimension that

corresponds to the position of the character in the vocabulary. For instance, the

one-hot encoding of the character a would be <1, 0, 0, 0, … >, the one-hot

encoding of b would be <0, 1, 0, 0, … > and so on. The sequence of vectors will be

the input to Bi-LSTM.

 10

Figure 4.2 shows the Seq2Seq model considered in this study with a two-layered

Bi-LSTM encoder and LSTM decoder. The encoder’s functions are to character by

character read the input sequence, build context, and extract a summary of the

input. The decoder will provide an output sequence in which the previous character

affects every character in each time step as well as the next character that emerges.

The marker <eos> denotes the end of a sentence, and it will determine when we

stop predicting the following character in a series [15]. Following the construction

of the encoder and decoder network architectures in this typical end-to-end

framework, a training approach may be utilized to obtain an optimal word pair

translation model and to keep the character order is referred to as a cell state or

memory cell since the horizontal line going across the bottom of the diagram is in

the source and target words, the input (Indonesia) and output (Minangkabau)

sequence must be treated in time order. For the Indonesian language, there are 28

input tokens used, and there are 31 output tokens as Minangkabau language.

Figure 4.2: Character Level Sequence-to-Sequence Model [18]

 11

4.2 Byte Pair Encoding-based Tokenization

BPE builds a base vocabulary consisting of all symbols found in the set of unique

words, then learns merge rules to combine two symbols from the base vocabulary

to create a new symbol. It continues to do until the vocabulary has grown to the

required size. BPE algorithm replaces the data byte pairs that occur most

frequently with a new byte until the data can no longer be compressed since no byte

pair occurs most frequently. The steps in the training procedure are as follows [14]:

1) Gather a huge amount of training data.

2) Determine the vocabulary’s size.

3) At identify the end of a word, add an identifier (</w>) to the end of each

word, and then calculate the word frequency in the text.

4) Calculate the character frequency after dividing the word into characters.

5) Count the frequency of consecutive byte pairs from the character tokens for

a predetermined number of rounds and combine the most frequently

occurring byte pairing.

6) Repeat step 5 until performed the necessary number of merging operations

or reached the specified vocabulary size.

The input text is treated as a sequence of unicode characters by SentencePiece.

Whitespace is also treated like any other symbol. SentencePiece expressly handles

whitespace as a fundamental token by first escaping it with the meta symbol "___"

(U+2581) [5]. Meanwhile the symbol of ‘\n’ is the end of string.

4.2.1 SentencePiece

The second method we presented is SentencePiece as subword tokenization.

According to Kudo [5], subword tokenization implements SentencePiece,

subword-nmt, and wordpiece model features. Subword vocabulary is built by using

the BPE segmentation method to train a SentencePiece tokenization model, which

divides words into chunks of characters based on vocabulary size to make pattern

detection easier. According to Kudo and Richardson [5], a SentencePiece is made

up of four primary parts:

 12

1. Normalizer is a module that may canonically normalize identical Unicode

characters.

2. Trainer, trains the model for subword segmentation of the normalized

corpus.

3. Encoder, uses the subword model taught by the trainer to tokenize and

normalize the input text into a list of subwords.

4. Decoder, which converts subwords into normalized text, reverses their order.

4.2.1 BPE-Based Tokenization in Indonesian Ethnic Languages

BPE was added to our research methodology because Indonesian ethnic

languages now utilize an alphabet script established by the Dutch despite having

original scripts in the past. Dutch people appeared to assign a chunk of alphabets

to phonemes of Indonesian ethnic languages when teaching the alphabets to them

[12]. As a result, all Indonesian ethnic languages can use the same tokens.

Furthermore, with each phonetic development, languages belonging to the same

language family descended from the same proto language. As a result, we assume

a phonetic-based strategy is preferable to a character-based method. The number

of words to be processed into tokenization is known as vocabulary size, which in

this case refers to the number of most often occurring characters, including the

symbol like </unk>, and whitespace. We employ a wide range of vocabulary sizes.

The following step is the same as the first method. Figure 4.3 shows that the

encoder and decoder input results because of character splitting from BPE in this

illustration of the seq2seq model. This approach differs from Figure 4.2 in that the

encoder (Indonesian word) and decoder (Minangkabau word) inputs are different.

 13

Figure 4.3: SentencePiece Sequence-to-Sequence Model [18]

The results of the chunk of characters from the BPE will vary when utilizing a

higher vocab size. Except for alphabets, the vocabularies obtained from BPE 40

and 100 are summarized in the Table 4.1 and 4.2. The number of vocabularies in

Indonesian and Minangkabau is the same overall (7 and 66, respectively), the

number of vocabularies in Indonesian and Palembang is 10 and 70 also 9 and 69,

respectively, and the number of vocabularies in Indonesian and Minang is 10 and

70 also 9 and 68, respectively. According to the Table 4.1, character pieces are more

obtained if use larger vocabulary sizes. The alphabet following the “_” symbol is a

piece of characters at the beginning of the term in vocabulary that begins with the

"_" symbol. Example in the Minangkabau language, the difference between the

character pieces sa and _sa is that sa indicates that the character is not at the

beginning of the word.

Tokenization BPE is generated by library SentencePiece [5]. The tokenization

with vocab size=40 is done almost one by one like character-based tokenization

 14

because vocab size=40 is nearly the same as the number of alphabets. The more

vocabulary size is used, the more character pieces are generated. Tokenization

results refer to the Table 4.1,4,3, and 4,5 that shows the words utilizing vocabulary

size =100 there seems to be a wider variety of character pieces compared to utilizing

vocabulary size =40.

Table 4.1: Example of tokenization BPE with different vocabulary size

Table 4.2: Vocabularies obtained from BPE Indonesian-Minangkabau

Vocab Size=40 Vocab Size=100
Indonesian Minangkabau Indonesian Minangkabau

[_,n,an] [_,y,a,ng,\’n’] [_,n,an] [_,ya,ng,\’n’]

[_pa,d,o] [_,p,a,d,a,\’n’] [_pa,do] [_pa,da,’\n’]

[_a,d,o,la,h] [_,a,d,a,l,a,h,\’n’] [_a,do,la,h] [_a,da,la,h,’\n’]

[_,s,a,g,i,r,o] [_,s,e,g,e,ra,’\n’] [_sa, gi, ro] [_se,g,e,ra,’\n’]

[_,d,a,s,an,y,o] [_,d,a,s,a,r,nya,’\n’] [_,da,sa,nyo] [_,da,sa,r,nya,’\n’]

Language Vocabsize=40 Vocabsize = 100
Indonesian an , ng, nya, ta, kan, _di,

_men
an, ng, kan, ta, _di, la,
nya, ra, da, si, _ke, _ber,
ti, ba, li, ga, ri, ja, er, tu,
bu, _se, at, in, _men,
ma, sa, _per, ka, en, di,
wa, ku, _meng, ya, na,
_me, _pen, te, mp, ca,
_p, _ter, ru, du, _mem,
de, pa, or,un, ar, ju, is,
_ka, bi, _ko,_ma, re, on,
_ba, _pe, _pem, tan, pu,
gu, al, ran, asi

Minangkabau an, ang, _pa, _di, _ma, _ba,
ng

an, ng, _di, _ba, ra, si,
la,_pa, nyo, _ka, ta, da,
ang, _ma, ik, kan, li, ri,
ti, ak, tu, ka, _sa, _man,
ja, ah, _ta, bu, ga, ek, in,
ba, ku, sa, ma, su, di, ru,
ya, _a, mp, _pan, to, wa,
pa, ca, ran, du, ro, lu,
tan, lo, mba, angan, ju,
bi, pu, re, han, en, te, do,
de, ko, gu, gi, _mam

 15

Table 4.3. Example of tokenization BPE with different vocabulary size

Table 4.4: Vocabularies obtained from BPE Indonesian-Palembang

Vocab Size=40 Vocab Size=100
Indonesian Palembang Indonesian Palembang
[_,c,a,b,a,i] [_,c,a,b,i,k,\’n’] [_,ca,b,a,i] [_,c,a,b,ik’n’]

[_s,e,d,e,r,e,t] [_ba,d,e,r,e,t,\’n’] [_se,de,r,e,t] [_ba,de,r,e,t’\n’]

[_,a,d,i,l] [_,a,d,e,l,\’n’] [_,a,di,l] [_a,de,l’\n’]

[_,b,at,a,s,nya] [_ba,t,a,s,nye’\n’] [_ba, ta,s, nya] [_ba,t,as,nye\n’]

[_,a,d,a,p,u,n] [_,a,d,e,p,u,n’\n’] [_,a,da,p,un] [_,a,de,p,un’\n’]

Language Vocabsize=40 Vocabsize = 100
Indonesian an, kan, nya, ng, _ber, _di,

_pe, ang, si, at
an, kan, ng, nya, _ber,
_di, at, ta, si, la,
ang, _se, er, da, ga, _ke,
ja, in, tu, _men, bu,
 ar, ti, _meng, ah, en,
_per, ca, wa, ri, mp, _p,
 di, li, _ter, _ba, _mem,
un, sa, as, ya, ak, ma,
is, du, al, _per, ju, or, ku,
_ka, ru, lu, de, us, ur,
 mu, _te, na, gu, ik, ung,
_pen, _ma, te, el, _be,
on, _sa, nda

Palembang an, ke, ng, nye, _ba, at, ang,
_di, la

an, ke, nye, ng, _ba, at,
_di, ang, ak, ar, _n,
_me, si, _ta, _se, _pe,
da, ja, en, ah, _be, _p,
er, as, mp, al, li, in, ek,
am, ti, _ke, _te, la, de,
tu, _ka, _g, di, _sa, du,
ur, te, wa, _ma, or, ju,
su, on, un, ok, ap, ik, _c,
uk, ung, _pa, ut, se, ge,
is, _da, _bu, _nga, lu,
us, _tu, gha, asi

 16

Table 4.5: Vocabularies obtained from BPE Indonesian-Malay

Table 4.6: Vocabularies obtained from BPE Indonesian-Malay

Vocab Size=40 Vocab Size=100
Indonesian Malay Indonesian Malay
[_,a,k,t,a] [_,a,k,t,e,\’n’] [▁, ak, ta] [▁a, k, te, \’n’]

[_ber,k,i,s,ar] [_be,k,i,s,a,\’n’] [▁ber, k, is, ar] [▁be, k, i, sa,
\’n’]

[_,s,y,u,k,u,r,an] [_,s,y,u,k,o,r,an,\’n’] [▁, s, y, uk, ur,
an]

[▁, s, y, u, k, o, r,
an, \’n’]

[_,t,e,b,i,ng] [_,t,e,b,e,ng,’\n’] [▁te, b, ing] [▁te, be, ng, \’n’]

[_ber,t,a,j,u,k] [_be,ta,j,o,k’\n’] [_ber,ta,ju,k] [_be,ta,j,ok’\n’]

Language Vocabsize=40 Vocabsize = 100
Indonesian _an, _di, ng, _ber, ar, kan,

nya, si, ang, at
an, _di, _ber, ng, kan,
nya, ar, da, si, at, _se, ta,
ti, ang, la, en, _ter, _ke,
ah, in, ra, al, _ba, li, ak,
tu, ri, ur, er, di, or, sa,
_ka, as, un, is, ga, _te,
du, ung, ku, am, us, _bu,
ju, ing, asi, on, _pe, um,
_ja, _be, _per, ir, uk, ya,
_de, ru, _bi, te, lah, ut,
ek, _ga, se, _tu, kat, ol,
_ta, gu

Malay _ng, an, _di, _be, la, ba,
kan, ta

_di, ng, an, _be, kan, la,
ra, nye, ta, _te, _se, si,
ba, da, ka, _a, at, ti, ga,
_ke, sa, ri, _ba, te, wa,
ma, li, ja, ang, tu, ge, se,
de, ya, _pe, pe, ku, na,
re, ke, _ka, be, _ta, di,
_bu, _tu, to, _ha, pu, ju,
lu, nd, al, in, du, ong, ok,
_sa, pi, _per, bo, gi, _bi,
_pa, mpa, lah, on, _ma

 17

Chapter 5 Evaluation and Discussion

5.1 Data Set

The secondary data is obtained from Nasution et al. [10] and Koto et al [4] with

a total of 13,761-word translation pairs. Pre-processing the data is completed by

deleting duplicate word pairs and constructing an array of word pairs in the form

of a data type dictionary given by Python. Because in this case, there are various

word pairings of Indonesian to Minangkabau that have several meanings. A

dictionary is made up of a set of key-value pairs. Each key-value pair corresponds

to a certain value Baidalina et al. [1]. The data is validated to Minang speakers after

the duplicate data has been removed. As a result, there are 10277 translation pairs

in the complete set of data. In other experiments to create an Indonesian-

Palembang and Indonesian-Malay, unfortunately we have a lack of training data.

The secondary data is also obtained from [10] in Indonesian-Palembang there are

5098 translation pairs, then divided into 80% of training, and 20% of testing. There

are 4078 translation pairs Indonesian-Palembang in the training data set and 1020

in the testing data set. In Indonesian-Malay is 5229 translation pairs, divided into

4183 training, and 1046 testing data set. The model’s performance is evaluated

using a 5-Fold Cross-Validation.

Table 5.1: Summarizing the dictionary sizes and test and training data sizes.

Language
Pairs

Total Translation
Pairs

Training
Data

Testing
Data

Number of
Tokens

Indonesian-
Minangkabau

10277 8221 2056 28 and 31

Indonesian-
Palembang

5098 4078 1020 28 and 29

Indonesian-
Malay

5229 4182 1046 27 and 30

 18

5.2 Evaluation Method by K-Fold Cross Validation

In this study, validation will be carried out using K-Fold. Cross. The original

data are randomly divided into k for validation. In machine learning, cross

validation is an approach to determine whether a model has good generalizations,

as shown in figure 5.1 . (Able to have good performance on unseen examples).

Cross validation is a validation technique used to determine whether the

network model can generalize data from the training phase into independent data.

This technique is frequently used to assess how accurate the outcomes provided by

the predictor model throughout the training phase are in the context of forecasting

and prediction.

Figure 5.1: K-Fold Cross Validation (source: scikit-learn.org)

5.3 Parameter Design

In the first method, two models to find translation word pairs will be examined

by Bidirectional Long Short-Term Memory, and Long Short-Term Memory to

improve and compare performance with previous research [2]. We utilize the

parameters selected for both models in Table 5.2. In this case, the implemented

learning rate schedule technique is learning rate decay, we choose an initial

learning rate, then reduce it progressively according to a scheduler. We set a

learning rate is 0.001, then the learning rate decreases by 1% for every epoch above

the 15th. A slower learning rate may allow the model to acquire a more optimal or

even globally optimal set of weights, but it will take much longer to train the model.

 19

Table 5.2: Model Parameter

Character Level and SentencePiece with BPE

Parameter BiLSTM LSTM

Embedding
Size

512 512

Epoch 80 80

Batch Size 64 64

5.4 Baseline

The use of LSTM for bilingual lexical induction has been studied in the

biomedical field [2]. Angiography:angiografie, intracranial:intracranieel, cell

membrane:celmembraan, and epithelium:epitheel are a few examples of English-

Dutch translation pairs in the biomedical field. Their study uses a feed-forward

neural network to perform binary classification tasks. They use a fully connected

feed-forward neural network to the concatenation of source and target, which is

provided as input to the network, to integrate these word-level and character-level

representations.

Figure 5.2: Illustrations of the classification component with feed-forward networks of different

depths [2]

In the above figure they have two architecture models. Part a is the number of

layers between the representation layer and the output layer (H), they set to 0, it

means there are no hidden layer. rST representations the source and target in word

level and character level. On the other hand, at the word level, the classifier must

combine the embeddings of the source and target words in order to make an

 20

informed choice rather than merely computing a weighted sum of them, therefore

in part B they use two hidden layers.

The binary classification task in their study with the input is a pair of words, and

the output is a number between 0 and 1. An output value close to 1 means, they are

likely each other’s translations (in machine learning this is also called a positive

example). Values close to 0 mean that the model thinks the input is just a pair of

random words (a negative example). Here’s a simple example translate between

English and Dutch and the following are the source and target vocabularies:

𝑉𝑺= [the, cat, mat, dog]

 𝑉𝑻 = [de, het, kat, hond]

In theory, any combination of a word in the source vocabulary and a word in the

target vocabulary would be a valid input:

𝑉𝑺 𝑥 𝑉𝑻 = (the, de), (the, het), (the, kat), (the, dog), (cat, de), (cat, het), ……

(dog, hond)

However, when the vocabularies are large will have many pairs to feed to the

classifier. Thus in practice they use two heuristics to only select the most promising

pairs. Their first heuristic is to only select pairs which have a low character-level

edit distance (i.e., they pair words that ‘look’ the most similar) and second heuristic

is to select pairs that have similar multilingual embeddings. Then, feed the union

of candidates heuristics 1 and 2 to the classifier. Example:

candidates heuristic 1 = (the, het), (cat, kat), (mat, kat), (dog, de)

candidates heuristic 2 = (the, de), (cat, kat), (mat, dog), (dog, hond)

Even, they method is different to create a classifier that predicts whether a pair

of words is a translation, on the other hand their study also wants to find

translation. Their study utilizing LSTM network become a basis for our research.

 21

5.5 Evaluation Result

Table 5.3 : Evaluation of SentencePiece with BPE in Indonesian-Minangkabau

This study uses two scenarios to find the optimal seq2seq model with the best

performance. When comparing the character level and SentencePiece approaches

with the seq2seq model, the character level seq2seq method generates a more

accurate translation of word pairs.

Table 5.4: Evaluation of character-level model in Indonesian-Minangkabau

According to the Table 5.2 and Table 5.3, the results demonstrate that character-

level tokenization, as opposed to BPE tokenization, is more useful for translating

words to words. The vocabulary size has a minimum and maximum value. The

minimum number necessary for this experiment data is 33. The experiment was

run seven times with different vocabulary sizes, the maximum vocabulary size used

was 300. When utilizing a minimal vocabulary size in BPE, it indicates that the

number of tokens is approximately the same as character level based.

However, as shown in Table 5.2, the tokenization outcomes from the source and

target pairs will vary more as the vocabulary size increases, which has an impact on

the BPE performance outcomes. Perhaps, because the vector length is shortened,

the data is likely to be less informative, making it more difficult for the model to

Vocab
Size

K-Fold Cross-Validation
K = 1 K = 2 K = 3 K = 4 K = 5 Average

33 79.96 76.55 78.84 81.71 80.78 79.56
35 76.11 76.89 79.42 74.31 80.73 77.49
40 72.12 72.88 75.23 75.99 71.64 73.59
50 67.12 62.15 66.97 67.41 64.29 65.58
80 58.73 59.32 53.35 54.12 56.47 56.39
100 49.36 48.24 49.46 49.70 48.78 49.10
300 34.85 34.93 30.31 35.76 36.19 34.40

Method
K-Fold Cross-Validation

K = 1 K = 2 K = 3 K = 4 K = 5
Ave-
rage

BiLSTM
(encoder),

LSTM
(decoder)

84.72 83.7 82.67 83.6 87.5 83.92

LSTM (encoder
& decoder)

76.79 74.56 77.82 78.21 75.87 76.65

 22

recognize. In general, the larger the vocabulary size, the higher the results. It is also

probably because the data is word-to-word pairs translation instead of sentence to

sentence.

Figure 5.3 Comparison between SentencePiece with BPE and Character level method

Figure 5.3 illustrates the possibilities of why the character-based method is

superior to the BPE-based method. As shown in Table 5.3, the bigger the

vocabulary size, the lower the translation accuracy results. For an example of the

Minangkabau word is adolah, if we use the vocabulary size=300, the number of

tokens decreases, while the length of the vectors representing the tokens becomes

longer because the vectors need more expression power.

The same methodology of character level, and BPE with Bi-LSTM Seq2Seq

model was utilized in other experiments to create an Indonesian-Palembang,

Indonesian-Malay. Unfortunately, we have a lack of training data. The secondary

data is also obtained from [10] in Indonesian-Palembang there are 5098

translation pairs, then divided into 80% of training, and 20% of testing. There are

 23

4078 translation pairs in the training data set and 1020 in the testing data set. We

conducted three times of BPE experiment with vocabulary sizes 31, 33, 35, 40, 50,

80, and 100. Minimum value of vocabulary size in this case is 31. In character level

based the number of tokens in Indonesia is 28, and in Palembang is 29. First, the

total number of translation pairs that utilized in Indonesian-Malay is 5229, divided

into 4183 training, and 1046 testing. In this Byte Pair Encoding experiment we are

also using the Indonesian-Palembang scenario. In this instance, the minimum

vocabulary size is 32, and the number of tokens used in character level-based is 27

for Indonesian, and 30 for Malay.

We used the optimal setting of Bi-LSTM as encoder and LSTM as decoder to

generated translation pairs in the character level based experiment on Indonesian-

Palembang and Indonesian-Malay. Additionally, we experimented with creating

Indonesian-Minangkabau word pairs with a data size of approximately 5000

translation pairs. There are separated into 4183 training pairs and 1046 testing

pairs. This experiment aims to contrast the result of Indonesian-Malay and

Indonesian-Palembang translations. The Indonesian-Minangkabau translation

continues to have the highest yield based on the K-fold average while using only

half the amount of data.

Table 5.5: Evaluation of Character Level Model in Indonesian-Minangkabau with Half Data Size

Method
K-Fold Cross-Validation

K = 1 K = 2 K = 3 K = 4 K = 5
Ave-
rage

BiLSTM
(encoder),

LSTM
(decoder)

65.96 68.54 70.65 71.79 72.37 69.89

LSTM (encoder
& decoder)

46.94 48.85 45.88 52.19 57.55 50.28

 24

Table 5.6: Evaluation of SentencePiece with BPE in Indonesian-Palembang

Table 5.7: Evaluation of character-level model Indonesian-Palembang

Table 5.8: Evaluation of SentencePiece BPE in Indonesian-Malay

Vocab
Size

K-Fold Cross-Validation
K = 1 K = 2 K = 3 K = 4 K = 5 Average

31 63.82 58.92 64.11 61.17 63.13 62.23

33 62.54 61.27 62.05 60.39 62.64 61.77

35 58.13 61.66 63.23 60.98 62.64 61.32

40 45.60 43.3 45.60 44.26 45.79 44.91

50 37.45 37.05 39.80 41.07 39.11 38.89

80 30.98 30.29 32.25 29.50 29.21 30.44

100 25.88 23.33 26.66 25.58 25.29 25.34

Method
K-Fold Cross-Validation

K = 1 K = 2 K = 3 K = 4 K = 5 Average
BiLSTM

(encoder), LSTM
(decoder)

63.82 62.45 63.23 60.29 62.84 62.52

LSTM (encoder
& decoder)

44.31 41.47 45.19 43.43 44.41 43.76

Vocab
Size

K-Fold Cross-Validation
K = 1 K = 2 K = 3 K = 4 K = 5 Average

32 61.95 62.04 61.66 61.56 62.23 61.88

33 58.22 62.23 65.96 64.34 67.59 63.66

35 51.62 55.64 59.75 57.74 59.84 56.91

40 53.72 48.62 55.0 47.64 53.62 51.79

50 39.16 36.04 35.55 36.13 38.04 36.58

80 26.57 29.06 30.11 29.92 31.73 29.47

100 21.03 22.84 23.13 23.61 24.76 23.07

 25

Table 5.9: Evaluation of character-level model Indonesian-Malay

Results of an average precision comparison of language pairings are shown in

Figures 5.4 and 5.5. Figure 5.4 depicts the comparison result using BPE, while

Figure 5.5 depicts the comparison result based on character level.

Figure 5.4: Comparison Language Pairs Result by BPE

Figure 5.5: Comparison Language Pairs Result by Character level Based

Method
K-Fold Cross-Validation

K = 1 K = 2 K = 3 K = 4 K = 5 Average
BiLSTM

(encoder), LSTM
(decoder)

64.72 66.15 65.20 65.96 63.38 65.08

LSTM (encoder
& decoder)

47.99 39.57 40.63 46.36 49.80 44.87

 26

In additional experiment, we also used the encoder settings from Indonesian-

Minangkabau with roughly ten thousand translation pairings as initial values for

other encoder in different language pairs (Indonesia-Palembang and Indonesia-

Minangkabau). When define an input sequence , add the model that has been

generated from Indonesian-Minangkabau character level Bi-LSTM Seq2Seq

experiment.

model_minang=keras.models.load_model(currwd_minang+f"seq2seq_{i}.h5")

encoder_inputs = model_minang.input

Table 5.9: Evaluation of character-level model Indonesian-Palembang using Initial Encoder

Table 5.9.1 : Evaluation of character-level model Indonesian-Malay using Initial Encoder

Figure 5.6 compares the average precision results between Indonesian-

Palembang and Indonesian-Malay using the intial encoder model from

Indonesian-Minangkabau. In both language pairs, we are using half the data size.

The total number of translation pairs is 5089 for Indonesian-Palembang and 5229

for Indonesian-Malay. According on the encoder-reuse model's performance,

reusing the existing encoder that has been trained using several language

translations pairs (high data size) seems to be beneficial.

Method
K-Fold Cross-Validation

K = 1 K = 2 K = 3 K = 4 K = 5
Averag

e
BiLSTM

(encoder), LSTM
(decoder)

64.41 63.03 63.13 61.56 62.94 63.01

Method
K-Fold Cross-Validation

K = 1 K = 2 K = 3 K = 4 K = 5
Averag

e
BiLSTM

(encoder), LSTM
(decoder)

61.66 63.00 63.67 64.53 65.77 63.72

 27

Figure 5.6: Comparison Language Pairs Result with Encoder

5.6 Pattern-based Precision

Simple rule-based performance evaluation has been done to compare with

neural network performance result (Character level Bi-LSTM), whether the neural

network-based performs efficiently or not. The rule-based approach is not our

proposed. For comparing our model, use that as the baseline. Minang speakers

provided the patterns used in the Minangkabau and Indonesian languages. Step to

generate translation using rule-based are as follows:

1. Remove the similar word translation pairs from the 2056 translation

pairings. The remaining data, after the similar translation pairs are removed,

is 1262.

2. Determine the rules manually by regular expression.

3. Use the rules that have been determined and apply to all source words and

replaces rule matches with a string.

63.01

63.72

62.6

62.8

63

63.2

63.4

63.6

63.8

BiLSTM (encoder), LSTM (decoder) BiLSTM (encoder), LSTM (decoder)

Av
er

ag
e

Pr
ec

is
io

n

Methods

Comparison Language Pairs Result with Encoder-Reuse
Model

BiLSTM (encoder), LSTM (decoder) BiLSTM (encoder), LSTM (decoder)Indonesian - Palembang Indonesian - Malay

 28

Below is the figure of patterns in the Indonesian-Minangkabau language:

Figure 5.9.1: List of Patterns in Indonesian and Minangkabau

There are 34 patterns, except based on the above pattern number 19-20 and 21-

27 in regular expression are converted into a group by changing all first characters

before “e” to “a” and all first characters before "er" to “a”. The group can be created

using the regular expressions (’([aiueo]*) e’) and (’([aiueo]*) er’). Also converted

into a group by changing all first character before “eng” to “a” and all characters

before “eng” to “ang” in regular expression becomes ([^aiueo]*)eng ang and

([^aiueo]*)eng a.

 29

Table 5.9.2: The Number of Comparisons Between Neural Network Approach and Rule-Based

The table above shows the comparison result of simple rule based and neural

network based. We compare it by examining some of the potential outcomes from

data testing. According to the Table 5.9.2 the outcome of accurate translation in

terms of the target language is true, meanwhile false is a translation inaccurate that

is in the target language. The performance according to each pattern by comparing

with the simple rule-based system is described in Table 5.9.3.

Table 5.9.3. Compare performance with Simple-Rule Based

Pattern Match
Rule
Based

Match
Neural
Network

Total
of All
Words

Precision
Rule
Based

Precision
Neural
Network

First all
character
before eng to
ang 19 72 89 0.21 0.81
First all
character
before eng to all
character
before a 0 0 1 0 0

Comparison The Possibilities of Both Method

Neural Network
Approach (True)

Rule Based (True) 374

Neural Network
Approach (True)

Rule Based (False) 643

Neural Network
Approach (False)

Rule Based (True) 59

Neural Network
Approach (False)

Rule Based (False) 186

Total Translation Pairs 1262

 30

Pattern Match
Rule
Based

Match
Neural
Network

Total
of All
Words

Precision
Rule
Based

Precision
Neural
Network

First all
character
before er to
befor a 94 242 291 0.32 0.83
First all
character
before e to
before a 184 422 517 0.36 0.82
Ending uk to
uak

11 14 15 0.73 0.93
Ending a to o

98 203 259 0.38 0.78
Ending ik to iak

3 11 11 0.27 1
Ending ing to
iang

15 20 22 0.68 0.91
Remove last of
character

13 50 63 0.21 0.79
Ending as to eh

6 15 18 0.33 0.83
Ending uh to
uah

10 11 13 0.77 0.85
Ending uk to
uik

6 9 10 0.6 0.9
Ending ung to
uang 17 24 24 0.71 1
Ending ap to ok

6 10 13 0.46 0.77
Ending at to aik

22 54 69 0.32 0.78
Ending at to ek

0 0 0 0 0
Ending ir to ia

0 0 0 0 0
Ending ur to ua

0 0 0 0 0
Ending kan to
an 30 139 164 0.18 0.85

 31

Pattern Match
Rule
Based

Match
Neural
Network

Total
of All
Words

Precision
Rule
Based

Precision
Neural
Network

Ending it to ik
4 5 6 0.67 0.83

Ending it to iak
0 0 0 0 0

Ending is to ih
0 11 12 0 0.92

Ending ul to ua
4 3 4 1 0.75

Ending d to ik
1 5 6 0.17 0.83

Ending id to ik
0 0 0 0 0

Ending ih to
iah 6 20 22 0.27 0.91
Ending us to
uih 4 12 16 0.25 0.75
Ending il to ia

3 4 5 0.6 0.8

Total 0.34 0.66

Based on table 5.9.2 compared to simple rule-based performance, neural

network approach is superior since it allows for the generation of output

translations with a variety of patterns. Simple rule based could not distinguish the

patterns according to the position of index rule that has been determined. Example

the words of darat to darek , even though we define the rule = ending at to ek but

based on index rule, the rule “ending at to aik “is in index position before rule at to

ek. Therefore, the result in that rule is not found.

Using half data size, and even with a total data set of 2.000-Indonesia-

Minangkabau word pairings, comparison studies between Rule-based as baseline

and Neural Network models were also conducted. The steps are the same as in the

10.000 translation pair experiment. The only difference on 5000 translation pair

data is this step, which remove the similar word translation pairs from the 1046

translation pairings. The remaining data, after the similar translation pairs are

removed, is 641. Below is the table result of comparisons between Neural Network

and Rule-based using half data size translation pairs.

 32

Table 5.9.4: Neural Network Approach and Rule-Based 5000 Translation Pairs

Based on Table 5.9.4 Neural Network approach still outperforms the Rule-

based with 267 pairs of words that are correctly translated. The performance

according to each pattern is shown in Table 5.9.5.

Table 5.9.5: Compare performance with Simple-Rule Based

Match
RB

Match
NN

Total Precision
RB

Precision
NN

First all character
before eng to ang

13 16 25 0.52 0.64
First all character

before eng to all character
before a 0 0 0 0 0

First all character
before er to befor a

18 36 56 0.32 0.64
First all character

before e to before a
60 88 137 0.44 0.64

Comparison The Possibilities of Both Method

Neural Network
Approach (True)

Rule Based (True) 179

Neural Network
Approach (True)

Rule Based (False) 267

Neural Network
Approach (False)

Rule Based (True) 53

Neural Network
Approach (False)

Rule Based (False) 142

Total Translation Pairs 641

 33

Ending uk to uak
2 3 3 0.67 1

Ending a to o
23 43 66 0.35 0.65

Ending ik to iak
1 3 4 0.25 0.75

Ending ing to iang
4 5 6 0.67 0.83

Remove last of
character 2 8 11 0.18 0.73

Ending as to eh

2 4 7 0.29 0.57
Ending uh to uah

4 5 5 0.8 1
Ending uk to uik

0 0 1 0 0
Ending ung to uang

5 3 6 0.83 0.5
Ending ap to ok

0 1 1 0 1
Ending at to aik

1 6 6 0.17 1
Ending at to ek

0 0 0 0 0
Ending ir to ia

0 0 0 0 0
Ending ur to ua

0 0 0 0 0
Ending kan to an

14 23 35 0.4 0.66
Ending it to ik

1 3 3 0.33 1
Ending it to iak

0 0 0 0 0
Ending is to ih

0 3 4 0 0.75
Ending ul to ua

1 2 3 0.33 0.67
Ending d to ik

0 0 0 0 0
Ending id to ik

0 0 0 0 0
Ending ih to iah

4 6 8 0.5 0.75

 34

Ending us to uih

2 2 4 0.5 0.5
Ending il to ia

0 1 2 0 0.5

For the index rule sequence created based on the same regular expression as the

experiment with around 10.000 translation pairs. There are fewer patterns that do

not have translation pairs because of the amount of the data used.

We experimented with a smaller sample size of 2569 Indonesian-Minangkabau

translation pairings. They are divided into 2055 training data and 514 testing data.

The average outcome utilizing character level Bi-LSTM and K Fold Validation is

shown below.

Table 5.9.6: Result of Character Level Model in Indonesian-Minangkabau 2.000 Data Size

The first step to compare with Rule-based is remove the similar word translation

pairs from the 514 translation pairings. After similar translation pairings are

removed, 312 pairings are left. Then the next step is similar to the experiment above.

Comparison results of simple rule-based and neural network based is shown in

table 5.9.7 and the performance according to each pattern by comparing with the

simple rule-based system is described in Table 5.9.8.

Method
K-Fold Cross-Validation

K = 1 K = 2 K = 3 K = 4 K = 5 Average
BiLSTM

(encoder), LSTM
(decoder)

55.44 57.78 64.20 64.00 66.34 61.55

 35

Table 5.9.7: Neural Network Approach and Rule-Based 2.000 Translation Pairs

Table 5.9.8: Neural Network Approach and Rule-Based 2.000 Translation Pairs

Match
RB

Match
NN

Total Precision
RB

Precision
NN

First all character
before eng to ang

13 16 25 0.52 0.64
First all character

before eng to all character
before a 0 0 0 0 0

First all character
before er to befor a 18 36 56 0.32 0.64

First all character
before e to before a 60 88 137 0.44 0.64

Ending uk to uak
2 3 3 0.67 1

Ending a to o
23 43 66 0.35 0.65

Ending ik to iak
1 3 4 0.25 0.75

Ending ing to iang
4 5 6 0.67 0.83

Comparison The Possibilities of Both Method

Neural Network
Approach (True)

Rule Based (True) 87

Neural Network
Approach (True)

Rule Based (False) 107

Neural Network
Approach (False)

Rule Based (True) 36

Neural Network
Approach (False)

Rule Based (False) 82

Total Translation Pairs 312

 36

Remove last of
character 2 8 11 0.18 0.73

Ending as to eh
2 4 7 0.29 0.57

Ending uh to uah

4 5 5 0.8 1
Ending uk to uik

0 0 1 0 0
Ending ung to uang

5 3 6 0.83 0.5
Ending ap to ok

0 1 1 0 1
Ending at to aik

1 6 6 0.17 1
Ending at to ek

0 0 0 0 0
Ending ir to ia

0 0 0 0 0
Ending ur to ua

0 0 0 0 0
Ending kan to an

14 23 35 0.4 0.66
Ending it to ik

1 3 3 0.33 1
Ending it to iak

0 0 0 0 0
Ending is to ih

0 3 4 0 0.75
Ending ul to ua

1 2 3 0.33 0.67
Ending d to ik

0 0 0 0 0
Ending id to ik

0 0 0 0 0
Ending ih to iah

4 6 8 0.5 0.75
Ending us to uih

2 2 4 0.5 0.5
Ending il to ia

0 1 2 0 0.5

According to all experiments, the neural network approach result outperforms

the simple rule-based. As is well known that the rule-based approach is unable to

 37

distinguish the position of the index rule. Additionally, we do not use a specific

strategy in this experiment to identify where the index rule created by regular

expression should be placed. Therefore, that it also has an impact on rule-based

performance. This experiment section is to show well the proposed model can

reproduce the well-known pattern compared to the simple rules based as baseline.

 38

 Chapter 6 Conclusion

In case to translate word to word pairs, it can be argued that the neural network

approach utilizing a sequence-to-sequence model is better able to extract

Indonesian-Minangkabau language patterns with a distinct number of tokens

based on character basis. Character level seq2seq method (Bi-LSTM as encoder

and LSTM as decoder) outperforms SentencePiece byte pair encoding (vocab size

of 33) according to a comparison of the two methods utilized, which has an average

precision of 79.56% compared to 83.92% for character level seq2seq method. Lack

of training data was one of the obstacles in the experiment to create an Indonesian-

Palembang dictionary, the best outcomes were obtained from the Character level

seq2seq method (Bi-LSTM as encoder and LSTM as decoder) with an average

precision of 62.52%. The best setting (character level embedding with the Bi-LSTM

as encoder and LSTM as decoder) shows a good result for four other Indonesian

ethnic languages even with about half size of input dictionaries (Palembang,

Malay) with the average precision of 65.2% and 65.08%, respectively. The

performance of the encoder-reuse model it seems useful to reuse the exiting

encoder trained by different language translation pairs. The result of average

precision in Indonesian-Palembang, and Indonesian-Minangkabau using encoder-

reuse model is 63.01% and 63.72%. In the future, we would like to apply this

method to other Indonesian ethnic languages that might not only demand the same

pattern.

Additionally, compared to simple rule-based performance, neural network

methodology is superior since it allows for the generation of output translations

with a variety of patterns.

 39

Acknowledgments

Firstly, I would like to give my acknowledgement to my supervisor, Prof Yohei

Murakami for giving me a chance to study under his guidance. This research would

have not been possible without his guidance and support. I am really grateful to

study under such an inspiring person. Without him, I would never reached this far.

My thanks go the members of Social Intelligent Laboratory, especially Ampere,

Nishimura , Motozawa, Te, Li , and the others for their assistance and support in

helping me to comprehend the research done by the member labs. I'm thankful to

Allah SWT for everything, because without him, I couldn't have completed my

study. I thank my family, for the love, supports, and prayers. I would never reached

this far without all of their supports.

I would like to thank all of my Indonesian friends in Japan, especially Fira and

Suryadi, as well as Ema, Aisyah, Teh Chami, Andri, Opi, Abi, Marcel, and all of the

dorm students, for all of their support. Even though they do not stay in Japan, I

also want to thank my Indonesian friends Rani, Farah, Ruen, Shofi, Pi, Haqi,

Ghufron, Uul, Nisa, Zakia, Milah, Dima, Ana, Venia, and Dinda for their support,

especially thanks to Ali in helping me to do this research. Last but not least, I would

like to thank myself for struggling and surviving on campus, and for Japan’s life.

 40

 References
[1] A.R. Baidalina, and S.A. Boranbayev and. 2021. PROGRAMMING DATA

STRUCTURE ALGORITHMS IN PYTHON. 73, 1 (mar 2021), 134–141.

[2] Geert Heyman, Ivan Vulić, and Marie-Francine Moens. 2018. A deep learning approach

to bilingual lexicon induction in the biomedical domain. BMC Bioinformatics 19, 1 (jul

2018).

[3] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural

Computation 9, 8 (nov 1997), 1735–1780.

[4] Fajri Koto and Ikhwan Koto. 2020. Towards Computational Linguistics in

Minangkabau Language: Studies on Sentiment Analysis and Machine Translation. In

Proceedings of the 34th Pacific Asia Conference on Language, Information and

Computation. 138–148.

[5] Taku Kudo. 2018. Subword Regularization: Improving Neural Network Translation

Models with Multiple Subword Candidates. In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers). Association for

Computational Linguistics.

[6] Yohei Murakami. 2019. Indonesia Language Sphere: an ecosystem for dictionary

development for low-resource languages. Journal of Physics: Conference Series 1192 (mar

2019), 012001.

[7] Arbi Haza Nasution, Yohei Murakami, and Toru Ishida. 2016. Constraint-based

bilingual lexicon induction for closely related languages. In Proceedings of the Tenth

International Conference on Language Resources and Evaluation (LREC’16). 3291–3298.

[8] Arbi Haza Nasution, Yohei Murakami, and Toru Ishida. 2017. A generalized constraint

approach to bilingual dictionary induction for low-resource language families. ACM

Transactions on Asian and Low-Resource Language Information Processing (TALLIP) 17,

2 (2017), 1–29.

[9] Arbi Haza Nasution, Yohei Murakami, and Toru Ishida. 2017. Plan optimization for

creating bilingual dictionaries of low resource languages. In 2017 International Conference

on Culture and Computing (Culture and Computing). IEEE, 35–41.

[10] Arbi Haza Nasution, Yohei Murakami, and Toru Ishida. 2019. Generating similarity

cluster of Indonesian languages with semi-supervised clustering. International Journal of

Electrical and Computer Engineering (IJECE) 9, 1 (feb 2019), 531.

 41

[11] Arbi Haza Nasution, Yohei Murakami, and Toru Ishida. 2021. Plan Optimization to

Bilingual Dictionary Induction for Low Resource Language Families. Transactions on

Asian and Low-Resource Language Information Processing 20, 2 (2021), 1–28.

[12] Scott Paauw. 2009. One Land, One Nation, One Language: An Analysis of Indonesia’s

National Language Policy. University of Rochester working papers in the language sciences

5, 1 (2009).

[13] M. Schuster and K.K. Paliwal. 1997. Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[14] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine

Translation of RareWords with Subword Units. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers). Association for

Computational Linguistics.

[15] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

with neural networks. Advances in neural information processing systems 27 (2014).

[16] Intan Nurma Yulita, Mohamad Ivan Fanany, and Aniati Murni Arymuthy. 2017. Bi-

directional Long Short-Term Memory using Quantized data of Deep Belief Networks for

Sleep Stage Classification. Procedia Computer Science 116 (2017), 530–538.

[17] Haijun Zhang, Jingxuan Li, Yuzhu Ji, and Heng Yue. 2016. A character-level

sequence-to-sequence method for subtitle learning. In 2016 -IEEE 14th International

Conference on Industrial Informatics (INDIN). IEEE.

[18] Kartika Resiandi, Yohei Murakami, and Arbi Haza Nasution. 2022. A Neural Network

Approach to Create Minangkabau-Indonesia Bilingual Dictionary. Proceedings of

SIGUL2022@LREC2022. Pages 122–128.

[19] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben- gio. 2014. Neural machine

translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

[20] Zichao Yang, Zhiting Hu, Yuntian Deng, Chris Dyer, and Alex Smola. 2016. Neural

Machine Translation with Recurrent Attention Modeling. arXiv preprint arXiv:1607.05.108.

[21] Y.M. Wazery, Marwa E. Saleh, Abdullah Alharbi, and Abdelmgeid A. Ali. Abstractive

Arabic Text Summarization Based on Deep Learning. Hindawi. Computational Intelligence

and Neuroscience. Volume 2022. Article ID 1566890.

	Chapter 1 Introduction
	Chapter 2 Related Work
	2.1 Bilingual Dictionary Induction
	2.2 A Neural Network Approach

	Chapter 3 Sequence-to-Sequence Model
	3.1 Overview
	3.2 Long Short-Term Memory (LSTM)
	3.3 Bi-Directional Long Short-Term Memory (Bi-LSTM)

	Chapter 4 Tokenization for Sequence-to-Sequence Model
	4.1 Character Level Sequence-to-Sequence Model
	4.2 Byte Pair Encoding-based Tokenization
	4.2.1 SentencePiece
	4.2.1 BPE-Based Tokenization in Indonesian Ethnic Languages

	Chapter 5 Evaluation and Discussion
	5.1 Data Set
	5.2 Evaluation Method by K-Fold Cross Validation
	5.3 Parameter Design
	5.4 Baseline
	5.5 Evaluation Result
	5.6 Pattern-based Precision

	Chapter 6 Conclusion
	Chapter 6 Conclusion
	Chapter 6 Conclusion
	Chapter 6 Conclusion

